Intrinsic neuronal dynamics predict distinct functional roles during working memory.
Nat Commun
; 9(1): 3499, 2018 08 29.
Article
em En
| MEDLINE
| ID: mdl-30158572
Working memory (WM) is characterized by the ability to maintain stable representations over time; however, neural activity associated with WM maintenance can be highly dynamic. We explore whether complex population coding dynamics during WM relate to the intrinsic temporal properties of single neurons in lateral prefrontal cortex (lPFC), the frontal eye fields (FEF), and lateral intraparietal cortex (LIP) of two monkeys (Macaca mulatta). We find that cells with short timescales carry memory information relatively early during memory encoding in lPFC; whereas long-timescale cells play a greater role later during processing, dominating coding in the delay period. We also observe a link between functional connectivity at rest and the intrinsic timescale in FEF and LIP. Our results indicate that individual differences in the temporal processing capacity predict complex neuronal dynamics during WM, ranging from rapid dynamic encoding of stimuli to slower, but stable, maintenance of mnemonic information.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Córtex Pré-Frontal
/
Memória de Curto Prazo
/
Neurônios
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Animals
Idioma:
En
Ano de publicação:
2018
Tipo de documento:
Article