Diagnosing Fractionalization from the Spin Dynamics of Z_{2} Spin Liquids on the Kagome Lattice by Quantum Monte Carlo Simulations.
Phys Rev Lett
; 121(7): 077202, 2018 Aug 17.
Article
em En
| MEDLINE
| ID: mdl-30169092
Based on large-scale quantum Monte Carlo simulations, we examine the dynamical spin structure factor of the Balents-Fisher-Girvin kagome lattice spin-1/2 model, which is known to harbor an extended Z_{2} quantum spin liquid phase. We use a correlation-matrix sampling scheme combined with a stochastic analytic continuation method to resolve the spectral functions of this anisotropic quantum spin model with a three-site unit cell. Based on this approach, we monitor the spin dynamics throughout the phase diagram of this model, from the XY-ferromagnetic region to the Z_{2} quantum spin liquid regime. In the latter phase, we identify a gapped two-spinon continuum in the transverse scattering channel, which is faithfully modeled by an effective spinon tight-binding model. Within the longitudinal channel, we identify gapped vison excitations and exhibit indications for the translational symmetry fractionalization of the visons via an enhanced spectral periodicity.
Texto completo:
1
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Ano de publicação:
2018
Tipo de documento:
Article