Your browser doesn't support javascript.
loading
Ultrathin MXene Nanosheets Decorated with TiO2 Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li-S Batteries.
Gao, Xiao-Tian; Xie, Ying; Zhu, Xiao-Dong; Sun, Ke-Ning; Xie, Xu-Ming; Liu, Yi-Tao; Yu, Jian-Yong; Ding, Bin.
Afiliação
  • Gao XT; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
  • Xie Y; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
  • Zhu XD; Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
  • Sun KN; Academy of Fundamental and Interdisciplinary Sciences Harbin Institute of Technology, Harbin, 150080, China.
  • Xie XM; Academy of Fundamental and Interdisciplinary Sciences Harbin Institute of Technology, Harbin, 150080, China.
  • Liu YT; Key Laboratory of Advanced Materials (Ministry of Education), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
  • Yu JY; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
  • Ding B; Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
Small ; 14(41): e1802443, 2018 Oct.
Article em En | MEDLINE | ID: mdl-30175545
Being conductive and flexible, 2D transition metal nitrides and carbides (MXenes) can serve in Li-S batteries as sulfur hosts to increase the conductivity and alleviate the volume expansion. However, the surface functional groups, such as OH and F, weaken the ability of bare MXenes in the chemisorption of polysulfides. Besides, they create numerous hydrogen bonds which make MXenes liable to restack, resulting in substantial loss of active area and, thus, inaccessibility of ions and electrolyte. Herein, a facile, one-step strategy is developed for the growth of TiO2 quantum dots (QDs) on ultrathin MXene (Ti3 C2 Tx ) nanosheets by cetyltrimethylammonium bromide-assisted solvothermal synthesis. These QDs act as spacers to isolate the MXene nanosheets from restacking, and preserve their 2D geometry which guarantees larger electrode-electrolyte contact area and higher sulfur loading. The stronger adsorption energy of polysulfides with TiO2 (than with Ti3 C2 Tx ), as proven by density functional theory calculations, is essential for better on-site polysulfide retention. The ultrathin nature and protected conductivity ensure rapid ion and electron diffusion, and the excellent flexibility maintains high mechanical integrity. In result, the TiO2 QDs@MXene/S cathode exhibits significantly improved long-term cyclability and rate capability, disclosing a new opportunity toward fast and stable Li-S batteries.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article