Your browser doesn't support javascript.
loading
P19 Cells as a Model for Studying the Circadian Clock in Stem Cells before and after Cell Differentiation.
Mashhour, Abdullah; Al Mansour, Zainab; Al Hallaj, Al Shaima; Ali, Rizwan; Trivilegio, Thadeo; Boudjelal, Mohamed.
Afiliação
  • Mashhour A; Medical Core Facility and Research Platforms, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, SA.
  • Al Mansour Z; Medical Core Facility and Research Platforms, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, SA.
  • Al Hallaj AS; Medical Core Facility and Research Platforms, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, SA.
  • Ali R; Medical Core Facility and Research Platforms, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, SA.
  • Trivilegio T; Medical Core Facility and Research Platforms, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, SA.
  • Boudjelal M; Medical Core Facility and Research Platforms, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, SA.
J Circadian Rhythms ; 16: 6, 2018 May 18.
Article em En | MEDLINE | ID: mdl-30210566
ABSTRACT
In mammals, circadian rhythmicity is sustained via a transcriptional/translational feedback loop referred to as the canonical molecular circadian clock. Circadian rhythm is absent in undifferentiated embryonic stem cells; it begins only after differentiation. We used pluripotent P19 embryonal carcinoma stem cells to check the biological clock before and after differentiation into neurons using retinoic acid. We show that the central clock genes ARNTL (Bmal), Per2 and Per3, and the peripheral clock genes Rev-erb-α and ROR-α, oscillate before and after differentiation, as does the expression of the neuronal differentiation markers Hes5, ß-3-tubulin (Tubb3) and Stra13, but not Neurod1. Furthermore, the known clock-modulating compounds ERK, EGFR, Pi3K, p38, DNA methylation and Sirtiun inhibitors, in addition to Rev-erb-α ligands, modulate the expression of central and peripheral clock genes. Interestingly Sirtinol, Sirt1 and Sirt2 inhibitors had the greatest significant effect on the expression of clock genes, and increased Hes5 and Tubb3 expression during neuronal differentiation. Our findings reveal a new frontier of circadian clock research in stem cells contrary to what has been published previously, we have shown the clock to be functional and to oscillate, even in undifferentiated stem cells. Modulating the expression of clock genes using small molecules could affect stem cell differentiation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article