Your browser doesn't support javascript.
loading
Flexible Learning-Free Segmentation and Reconstruction of Neural Volumes.
Shahbazi, Ali; Kinnison, Jeffery; Vescovi, Rafael; Du, Ming; Hill, Robert; Joesch, Maximilian; Takeno, Marc; Zeng, Hongkui; da Costa, Nuno Maçarico; Grutzendler, Jaime; Kasthuri, Narayanan; Scheirer, Walter J.
Afiliação
  • Shahbazi A; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA.
  • Kinnison J; Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA.
  • Vescovi R; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Du M; Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
  • Hill R; Department of Neurobiology, University of Chicago, Chicago, IL, USA.
  • Joesch M; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
  • Takeno M; Department of Neurology, Yale University, New Haven, CT, USA.
  • Zeng H; Neuroethology Group, IST Austria, Klosterneuburg, Austria.
  • da Costa NM; Allen Institute for Brain Science, Seattle, WA, USA.
  • Grutzendler J; Allen Institute for Brain Science, Seattle, WA, USA.
  • Kasthuri N; Allen Institute for Brain Science, Seattle, WA, USA.
  • Scheirer WJ; Department of Neurology, Yale University, New Haven, CT, USA.
Sci Rep ; 8(1): 14247, 2018 09 24.
Article em En | MEDLINE | ID: mdl-30250218
ABSTRACT
Imaging is a dominant strategy for data collection in neuroscience, yielding stacks of images that often scale to gigabytes of data for a single experiment. Machine learning algorithms from computer vision can serve as a pair of virtual eyes that tirelessly processes these images, automatically detecting and identifying microstructures. Unlike learning methods, our Flexible Learning-free Reconstruction of Imaged Neural volumes (FLoRIN) pipeline exploits structure-specific contextual clues and requires no training. This approach generalizes across different modalities, including serially-sectioned scanning electron microscopy (sSEM) of genetically labeled and contrast enhanced processes, spectral confocal reflectance (SCoRe) microscopy, and high-energy synchrotron X-ray microtomography (µCT) of large tissue volumes. We deploy the FLoRIN pipeline on newly published and novel mouse datasets, demonstrating the high biological fidelity of the pipeline's reconstructions. FLoRIN reconstructions are of sufficient quality for preliminary biological study, for example examining the distribution and morphology of cells or extracting single axons from functional data. Compared to existing supervised learning methods, FLoRIN is one to two orders of magnitude faster and produces high-quality reconstructions that are tolerant to noise and artifacts, as is shown qualitatively and quantitatively.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento Tridimensional / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imageamento Tridimensional / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article