Your browser doesn't support javascript.
loading
Resonant torsion magnetometry in anisotropic quantum materials.
Modic, K A; Bachmann, Maja D; Ramshaw, B J; Arnold, F; Shirer, K R; Estry, Amelia; Betts, J B; Ghimire, Nirmal J; Bauer, E D; Schmidt, Marcus; Baenitz, Michael; Svanidze, E; McDonald, Ross D; Shekhter, Arkady; Moll, Philip J W.
Afiliação
  • Modic KA; Max-Planck-Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187, Dresden, Germany. modic@cpfs.mpg.de.
  • Bachmann MD; Max-Planck-Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187, Dresden, Germany.
  • Ramshaw BJ; Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, 14853, USA.
  • Arnold F; Max-Planck-Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187, Dresden, Germany.
  • Shirer KR; Max-Planck-Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187, Dresden, Germany.
  • Estry A; Max-Planck-Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187, Dresden, Germany.
  • Betts JB; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Ghimire NJ; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Bauer ED; Argonne National Laboratory, Lemont, IL, 60439, USA.
  • Schmidt M; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Baenitz M; Max-Planck-Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187, Dresden, Germany.
  • Svanidze E; Max-Planck-Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187, Dresden, Germany.
  • McDonald RD; Max-Planck-Institute for Chemical Physics of Solids, Noethnitzer Strasse 40, D-01187, Dresden, Germany.
  • Shekhter A; Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  • Moll PJW; National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA.
Nat Commun ; 9(1): 3975, 2018 09 28.
Article em En | MEDLINE | ID: mdl-30266902
ABSTRACT
Unusual behavior in quantum materials commonly arises from their effective low-dimensional physics, reflecting the underlying anisotropy in the spin and charge degrees of freedom. Here we introduce the magnetotropic coefficient k = ∂2F/∂θ2, the second derivative of the free energy F with respect to the magnetic field orientation θ in the crystal. We show that the magnetotropic coefficient can be quantitatively determined from a shift in the resonant frequency of a commercially available atomic force microscopy cantilever under magnetic field. This detection method enables part per 100 million sensitivity and the ability to measure magnetic anisotropy in nanogram-scale samples, as demonstrated on the Weyl semimetal NbP. Measurement of the magnetotropic coefficient in the spin-liquid candidate RuCl3 highlights its sensitivity to anisotropic phase transitions and allows a quantitative comparison to other thermodynamic coefficients via the Ehrenfest relations.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article