Your browser doesn't support javascript.
loading
Endothelial cell α-globin and its molecular chaperone α-hemoglobin-stabilizing protein regulate arteriolar contractility.
Lechauve, Christophe; Butcher, Joshua T; Freiwan, Abdullah; Biwer, Lauren A; Keith, Julia M; Good, Miranda E; Ackerman, Hans; Tillman, Heather S; Kiger, Laurent; Isakson, Brant E; Weiss, Mitchell J.
Afiliação
  • Lechauve C; Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
  • Butcher JT; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
  • Freiwan A; Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
  • Biwer LA; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
  • Keith JM; Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
  • Good ME; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
  • Ackerman H; Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, Rockville, Maryland, USA.
  • Tillman HS; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
  • Kiger L; INSERM, U955 - EFS, Creteil, France.
  • Isakson BE; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
  • Weiss MJ; Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
J Clin Invest ; 128(11): 5073-5082, 2018 11 01.
Article em En | MEDLINE | ID: mdl-30295646
ABSTRACT
Arteriolar endothelial cell-expressed (EC-expressed) α-globin binds endothelial NOS (eNOS) and degrades its enzymatic product, NO, via dioxygenation, thereby lessening the vasodilatory effects of NO on nearby vascular smooth muscle. Although this reaction potentially affects vascular physiology, the mechanisms that regulate α-globin expression and dioxygenase activity in ECs are unknown. Without ß-globin, α-globin is unstable and cytotoxic, particularly in its oxidized form, which is generated by dioxygenation and recycled via endogenous reductases. We show that the molecular chaperone α-hemoglobin-stabilizing protein (AHSP) promotes arteriolar α-globin expression in vivo and facilitates its reduction by eNOS. In Ahsp-/- mice, EC α-globin was decreased by 70%. Ahsp-/- and Hba1-/- mice exhibited similar evidence of increased vascular NO signaling, including arteriolar dilation, blunted α1-adrenergic vasoconstriction, and reduced blood pressure. Purified α-globin bound eNOS or AHSP, but not both together. In ECs in culture, eNOS or AHSP enhanced α-globin expression posttranscriptionally. However, only AHSP prevented oxidized α-globin precipitation in solution. Finally, eNOS reduced AHSP-bound α-globin approximately 6-fold faster than did the major erythrocyte hemoglobin reductases (cytochrome B5 reductase plus cytochrome B5). Our data support a model whereby redox-sensitive shuttling of EC α-globin between AHSP and eNOS regulates EC NO degradation and vascular tone.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Chaperonas Moleculares / Células Endoteliais / Alfa-Globinas / Modelos Cardiovasculares / Contração Muscular Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Chaperonas Moleculares / Células Endoteliais / Alfa-Globinas / Modelos Cardiovasculares / Contração Muscular Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article