Your browser doesn't support javascript.
loading
Observation of Room-Temperature Photoluminescence Blinking in Armchair-Edge Graphene Nanoribbons.
Pfeiffer, Markus; Senkovskiy, Boris V; Haberer, Danny; Fischer, Felix R; Yang, Fan; Meerholz, Klaus; Ando, Yoichi; Grüneis, Alexander; Lindfors, Klas.
Afiliação
  • Pfeiffer M; Department für Chemie , Universität zu Köln , Luxemburger Strasse 116 , 50939 Köln , Germany.
  • Senkovskiy BV; II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany.
  • Haberer D; Department of Chemistry , University of California at Berkeley , Tan Hall 680 , Berkeley , California 94720 , United States.
  • Fischer FR; Department of Chemistry , University of California at Berkeley , Tan Hall 680 , Berkeley , California 94720 , United States.
  • Yang F; II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany.
  • Meerholz K; Department für Chemie , Universität zu Köln , Luxemburger Strasse 116 , 50939 Köln , Germany.
  • Ando Y; II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany.
  • Grüneis A; II. Physikalisches Institut , Universität zu Köln , Zülpicher Strasse 77 , 50937 Köln , Germany.
  • Lindfors K; Department für Chemie , Universität zu Köln , Luxemburger Strasse 116 , 50939 Köln , Germany.
Nano Lett ; 18(11): 7038-7044, 2018 11 14.
Article em En | MEDLINE | ID: mdl-30336056
By enhancing the photoluminescence from aligned seven-atom wide armchair-edge graphene nanoribbons using plasmonic nanoantennas, we are able to observe blinking of the emission. The on- and off-times of the blinking follow power law statistics. In time-resolved spectra, we observe spectral diffusion. These findings together are a strong indication of the emission originating from a single quantum emitter. The room temperature photoluminescence displays a narrow spectral width of less than 50 meV, which is significantly smaller than the previously observed ensemble line width of 0.8 eV. From spectral time traces, we identify three optical transitions, which are energetically situated below the lowest bulk excitonic state E11 of the nanoribbons. We attribute the emission to transitions involving Tamm states localized at the end of the nanoribbon. The photoluminescence from a single ribbon is strongly enhanced when its end is in the antenna hot spot resulting in the observed single molecule characteristics of the emission. Our findings illustrate the essential role of the end termination of graphene nanoribbons in light emission and allow us to construct a model for photoluminescence from nanoribbons.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article