Your browser doesn't support javascript.
loading
Elementary functions modified for seasonal effects to describe growth in freshwater fish✰.
Powell, Christopher D; López, Secundino; France, James.
Afiliação
  • Powell CD; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada. Electronic address: cpowell@uoguelph.ca.
  • López S; Instituto de Ganadería de Montaña (CSIC-Universidad de León), Departamento de Producción Animal, Universidad de León, 24071 León, Spain. Electronic address: s.lopez@unileon.es.
  • France J; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada. Electronic address: jfrance@uoguelph.ca.
J Theor Biol ; 461: 133-144, 2019 01 14.
Article em En | MEDLINE | ID: mdl-30342893
ABSTRACT
Two models were derived to describe fish growth while accounting for the effects of fluctuating water temperatures. The models were initially expressed in a ratestate form and subsequently integrated resulting in two analytical solutions, representing two distinct types of growth exponential (Model 1) and asymptotic (Model 2). Both models share the assumptions that growth machinery works at a rate which varies with water temperature and that growth is irreversible. In addition, in Model 1 it is assumed that quantity of growth machinery is proportional to live body weight and substrate is non-limiting over the period of growth; whereas Model 2 is based on the assumption that quantity of growth machinery is proportional to available substrate. Effects of seasonal variations in water temperature on fish growth are represented in both models by a sinusoidal function. The potential of these models was investigated through their ability to describe growth in eight datasets encompassing three species European bullhead (Cottus gobio), brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Models were evaluated using statistical measures of goodness-of-fit and through the analysis of residuals. Of the eight datasets, six displayed asymptotic growth while the other two exhibited exponential growth. Both models yield suitable simple growth functions with acceptable goodness-of-fit to fish growth curves under fluctuating water temperatures. However, Model 1, representing exponential growth, shows limited ability to predict fish size (length) when growth curves follow a clear asymptotic trend. This study enforces the idea that a given model is not always superior to another and that data structure and underlying model assumptions must be considered in model selection.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estações do Ano / Temperatura / Peixes / Água Doce / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estações do Ano / Temperatura / Peixes / Água Doce / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article