Your browser doesn't support javascript.
loading
Unravelling the Mechanisms of Gold-Silver Core-Shell Nanostructure Formation by in Situ TEM Using an Advanced Liquid Cell Design.
Hutzler, Andreas; Schmutzler, Tilo; Jank, Michael P M; Branscheid, Robert; Unruh, Tobias; Spiecker, Erdmann; Frey, Lothar.
Afiliação
  • Hutzler A; Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Cauerstraße 6 , 91058 Erlangen , Germany.
  • Schmutzler T; Institute for Crystallography and Structural Physics (ICSP), Department of Physics , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Staudtstraße 3 , 91058 Erlangen , Germany.
  • Jank MPM; Fraunhofer Institute for Integrated Systems and Device Technology IISB , Schottkystraße 10 , 91058 Erlangen , Germany.
  • Branscheid R; Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science and Engineering , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Cauerstraße 6 , 91058 Erlangen , Germany.
  • Unruh T; Institute for Crystallography and Structural Physics (ICSP), Department of Physics , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Staudtstraße 3 , 91058 Erlangen , Germany.
  • Spiecker E; Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Department of Materials Science and Engineering , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Cauerstraße 6 , 91058 Erlangen , Germany.
  • Frey L; Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering , Friedrich-Alexander University Erlangen-Nürnberg (FAU) , Cauerstraße 6 , 91058 Erlangen , Germany.
Nano Lett ; 18(11): 7222-7229, 2018 11 14.
Article em En | MEDLINE | ID: mdl-30346790
ABSTRACT
The growth of silver shells on gold nanorods is investigated by in situ liquid cell transmission electron microscopy using an advanced liquid cell architecture. The design is based on microwells in which the liquid is confined between a thin Si3N4 membrane on one side and a few-layer graphene cap on the other side. A well-defined specimen thickness and an ultraflat cell top allow for the application of high-resolution TEM and the application of analytical TEM techniques on the same sample. The combination of high-resolution data with chemical information is validated by radically new insights into the growth of silver shells on cetrimonium bromide stabilized gold nanorods. It is shown that silver bromide particles already formed in the stock solution play an important role in the exchange of silver ions. The Ag shell growth can be directly correlated with the layer-by-layer dissolution of AgBr nanocrystals, which can be controlled by the electron flux density via distinctly generated chemical species in the solvent. The derived model framework is confirmed by in situ UV-vis absorption spectroscopy evaluating the blue shift in the longitudinal surface plasmon resonance of anisotropic NRs in a complementary batch experiment.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article