Your browser doesn't support javascript.
loading
TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10.
Tan, Peng; Ye, Youqiong; He, Lian; Xie, Jiansheng; Jing, Ji; Ma, Guolin; Pan, Hongming; Han, Leng; Han, Weidong; Zhou, Yubin.
Afiliação
  • Tan P; Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
  • Ye Y; Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America.
  • He L; Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, United States of America.
  • Xie J; Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America.
  • Jing J; Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
  • Ma G; Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America.
  • Pan H; Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas, United States of America.
  • Han L; Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
  • Han W; Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston McGovern Medical School, Houston, Texas, United States of America.
  • Zhou Y; Department of Medical Oncology and Biomedical Research Center, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
PLoS Biol ; 16(11): e3000051, 2018 11.
Article em En | MEDLINE | ID: mdl-30408026
Cancer cells adopt various modes of migration during metastasis. How the ubiquitination machinery contributes to cancer cell motility remains underexplored. Here, we report that tripartite motif (TRIM) 59 is frequently up-regulated in metastatic breast cancer, which is correlated with advanced clinical stages and reduced survival among breast cancer patients. TRIM59 knockdown (KD) promoted apoptosis and inhibited tumor growth, while TRIM59 overexpression led to the opposite effects. Importantly, we uncovered TRIM59 as a key regulator of cell contractility and adhesion to control the plasticity of metastatic tumor cells. At the molecular level, we identified programmed cell death protein 10 (PDCD10) as a target of TRIM59. TRIM59 stabilized PDCD10 by suppressing RING finger and transmembrane domain-containing protein 1 (RNFT1)-induced lysine 63 (K63) ubiquitination and subsequent phosphotyrosine-independent ligand for the Lck SH2 domain of 62 kDa (p62)-selective autophagic degradation. TRIM59 promoted PDCD10-mediated suppression of Ras homolog family member A (RhoA)-Rho-associated coiled-coil kinase (ROCK) 1 signaling to control the transition between amoeboid and mesenchymal invasiveness. PDCD10 overexpression or administration of a ROCK inhibitor reversed TRIM59 loss-induced contractile phenotypes, thereby accelerating cell migration, invasion, and tumor formation. These findings establish the rationale for targeting deregulated TRIM59/PDCD10 to treat breast cancer.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Proto-Oncogênicas / Proteínas Reguladoras de Apoptose / Proteínas de Membrana / Metaloproteínas Tipo de estudo: Prognostic_studies Limite: Adult / Animals / Female / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Proto-Oncogênicas / Proteínas Reguladoras de Apoptose / Proteínas de Membrana / Metaloproteínas Tipo de estudo: Prognostic_studies Limite: Adult / Animals / Female / Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article