Your browser doesn't support javascript.
loading
Ion-Specific Hydration States of Zwitterionic Poly(sulfobetaine methacrylate) Brushes in Aqueous Solutions.
Sakamaki, Tatsunori; Inutsuka, Yoshihiro; Igata, Kosuke; Higaki, Keiko; Yamada, Norifumi L; Higaki, Yuji; Takahara, Atsushi.
Afiliação
  • Yamada NL; Neutron Science Laboratory , High Energy Accelerator Research Organization , Ibaraki 319-1106 , Japan.
Langmuir ; 35(5): 1583-1589, 2019 Feb 05.
Article em En | MEDLINE | ID: mdl-30441903
ABSTRACT
The ion-specific hydration states of zwitterionic poly(3-( N-2-methacryloyloxyethyl- N, N-dimethyl)ammonatopropanesulfonate) (PMAPS) brushes in various aqueous solutions were investigated by neutron reflectivity (NR) and atomic force microscopy (AFM). The asymmetric hydration state of the PMAPS brushes was verified from the NR scattering-length density profiles, while the variation in their swollen thickness was complementary as determined from AFM topographic images. PMAPS brushes got thicker in any salt solutions, while the extent of swelling and the dimensions of swollen chain structure were dependent on the ion species and salt concentration in the solutions. Anion specificity was clearly observed, whereas cations exhibited weaker modulation in ion-specific hydration states. The anion specificity could be ascribed to ion-specific interactions between the quaternary ammonium cation in sulfobetaine and the anions. The weak cation specificity was attributed to the intrinsically weak cohesive interactions between the weakly hydrated sulfonate anion in sulfobetaine and the strongly hydrated cations. The ion-specific hydration of PMAPS brushes was largely consistent with the ion-specific aggregation state of the PMAPS chains in aqueous solutions.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article