Your browser doesn't support javascript.
loading
Albumin uptake and distribution in the zebrafish liver as observed via correlative imaging.
Cheng, Delfine; Morsch, Marco; Shami, Gerald J; Chung, Roger S; Braet, Filip.
Afiliação
  • Cheng D; School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia. Electronic address: delfine.cheng@sydney.edu.au.
  • Morsch M; Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
  • Shami GJ; School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia.
  • Chung RS; Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
  • Braet F; School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia; Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre (Cellular Imaging Facility), The Universi
Exp Cell Res ; 374(1): 162-171, 2019 01 01.
Article em En | MEDLINE | ID: mdl-30496757
ABSTRACT
Although liver transport routes have been extensively studied in rodents, live imaging under in situ and in vivo conditions of large volumes is still proven to be difficult. In this study, we took advantage of the optical transparency of zebrafish and their small size to explore their usefulness for correlative imaging studies and liver transport experimentations. First, we assessed the micro-architecture of the zebrafish liver and compared its fine structure to the rodent and humans' literature. Next, we investigated the transport routes and cellular distribution of albumin using combined and correlative microscopy approaches. These methods permitted us to track the injected proteins at different time points through the process of liver uptake and clearance of albumin. We demonstrate strong structural and functional resemblance between the zebrafish liver and its rodents and humans' counterparts. In as short as 5 min post-injection, albumin rapidly accumulated within the LSECs. Furthermore, albumin entered the space of Disse where it initially accumulated then subsequently was taken up by the hepatocytes. We propose the zebrafish as a viable alternative experimental model for hepatic transport studies, allowing swift multimodal imaging and direct quantification on the hepatic distribution of supramolecular complexes of interest.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Albuminas / Imagem Molecular / Fígado Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peixe-Zebra / Albuminas / Imagem Molecular / Fígado Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article