Your browser doesn't support javascript.
loading
Oxytocin is indispensable for conspecific-odor preference and controls the initiation of female, but not male, sexual behavior in mice.
Dhungel, Sunil; Rai, Dilip; Terada, Misao; Orikasa, Chitose; Nishimori, Katsuhiko; Sakuma, Yasuo; Kondo, Yasuhiko.
Afiliação
  • Dhungel S; Department of Physiology, Nippon Medical School, Tokyo, Japan; Department of Physiology, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal.
  • Rai D; Department of Physiology, Nippon Medical School, Tokyo, Japan.
  • Terada M; Laboratory Animal Research Center, Dokkyo Medical School, Tochigi, Japan.
  • Orikasa C; Department of Physiology, Nippon Medical School, Tokyo, Japan.
  • Nishimori K; Department of Molecular and Cell Biology, Tohoku University, Miyagi, Japan.
  • Sakuma Y; Department of Physiology, Nippon Medical School, Tokyo, Japan; University of Tokyo Health Sciences, Tokyo, Japan.
  • Kondo Y; Department of Physiology, Nippon Medical School, Tokyo, Japan; Department of Animal Sciences, Teikyo University of Science, Yamanashi, Japan. Electronic address: ykondo@ntu.ac.jp.
Neurosci Res ; 148: 34-41, 2019 Nov.
Article em En | MEDLINE | ID: mdl-30502354
ABSTRACT
Oxytocin (OT) has been demonstrated to be involved in various social behaviors in mammals. However, OT gene knockout (OTKO) mice can conceive and deliver successfully, though females cannot rear their pups because of lack of lactation. Here, we investigated the sociosexual behavior of both sexes in two experimental setups olfactory preference for sexual partner's odor and direct social interaction in an enriched condition. In the preference test, mice were given a choice of two airborne odors derived from intact male and receptive female mice, or from intact or castrated male mice. Wild-type (WT) mice significantly preferred opposite-sex odors, whereas OTKO mice showed vigorous but equivalent exploration to all stimuli. In social interactions in the enriched condition, no difference in sexual behavior was found between WT and OTKO males. In contrast, WT female initiated sexual behavior at the second week test, while OTKO females required 4 weeks to receive successful mounts. Neuronal activation by odor stimulation was compared between WT and OTKO mice. The numbers of cFos-immunoreactive cells increased in the medial amygdala and the preoptic area after exposure to opposite-sex odors in WT mice, whereas the increase was suppressed in OTKO mice. We conclude that OT plays an important role in the regulation of olfactory-related social behavior in both male and female mice. The influence of OT was greater in female mice, especially during social interactions involving the acquisition of sexual experience.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Comportamento Sexual Animal / Ocitocina Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Comportamento Sexual Animal / Ocitocina Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article