Your browser doesn't support javascript.
loading
Impact of environmental hypercapnia on fertilization success rate and the early embryonic development of the clam Limecola balthica (Bivalvia, Tellinidae) from the southern Baltic Sea - A potential CO2 leakage case study.
Swiezak, Justyna; Borrero-Santiago, Ana R; Sokolowski, Adam; Olsen, Anders J.
Afiliação
  • Swiezak J; Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Al. Marszalka Józefa Pilsudskiego 46, 81-378 Gdynia, Poland. Electronic address: justyna.swiezak@ug.edu.pl.
  • Borrero-Santiago AR; Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway.
  • Sokolowski A; Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Al. Marszalka Józefa Pilsudskiego 46, 81-378 Gdynia, Poland.
  • Olsen AJ; Department of Biology, Norwegian University of Science and Technology, Brattørkaia 17B, 7010 Trondheim, Norway.
Mar Pollut Bull ; 136: 201-211, 2018 Nov.
Article em En | MEDLINE | ID: mdl-30509800
Carbon capture and storage technology was developed as a tool to mitigate the increased emissions of carbon dioxide by capture, transportation, injection and storage of CO2 into subterranean reservoirs. There is, however, a risk of future CO2 leakage from sub-seabed storage sites to the sea-floor sediments and overlying water, causing a pH decrease. The aim of this study was to assess effects of CO2-induced seawater acidification on fertilization success and early embryonic development of the sediment-burrowing bivalve Limecola balthica L. from the Baltic Sea. Laboratory experiments using a CO2 enrichment system involved three different pH variants (pH 7.7 as control, pH 7.0 and pH 6.3, both representing environmental hypercapnia). The results showed significant fertilization success reduction under pH 7.0 and 6.3 and development delays at 4 and 9 h post gamete encounter. Several morphological aberrations (cell breakage, cytoplasm leakages, blastomere deformations) in the early embryos at different cleavage stages were observed.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água do Mar / Dióxido de Carbono / Bivalves Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Água do Mar / Dióxido de Carbono / Bivalves Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article