Your browser doesn't support javascript.
loading
Electrospun Patch Functionalized with Nanoparticles Allows for Spatiotemporal Release of VEGF and PDGF-BB Promoting In Vivo Neovascularization.
Tsao, Christopher J; Pandolfi, Laura; Wang, Xin; Minardi, Silvia; Lupo, Cristina; Evangelopoulos, Michael; Hendrickson, Troy; Shi, Aaron; Storci, Gianluca; Taraballi, Francesca; Tasciotti, Ennio.
Afiliação
  • Tsao CJ; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
  • Pandolfi L; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
  • Wang X; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
  • Minardi S; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
  • Lupo C; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
  • Evangelopoulos M; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
  • Hendrickson T; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
  • Shi A; MD/PhD Program , Texas A&M College of Medicine , 8441 Riverside Parkway , Bryan , Texas 77807 , United States.
  • Storci G; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
  • Taraballi F; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
  • Tasciotti E; Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States.
ACS Appl Mater Interfaces ; 10(51): 44344-44353, 2018 Dec 26.
Article em En | MEDLINE | ID: mdl-30511828
ABSTRACT
The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). The tight spatiotemporal release of these two proteins has been proven to promote neovascularization. In order to minimize tissue toxicity, localize the release, and maintain a stable platform, we conjugated two formulations of PLGA-pSi to electrospun (ES) gelatin to create a combined ES patch releasing both PDGF and VEGF. When compared to freely dispersed particles, the ES patch cultured in vitro with neonatal cardiac cells had significantly less particle internalization (2.0 ± 1.3%) compared to free PLGA-pSi (21.5 ± 6.1) or pSi (28.7 ± 2.5) groups. Internalization was positively correlated to late-stage apoptosis with PLGA-pSi and pSi groups having increased apoptosis compared to the untreated group. When implanted subcutaneously, the ES patch was shown to have greater neovascularization than controls evidenced by increased expression of α-SMA and CD31 after 21 days. Quantitative reverse transcription-polymerase chain reaction results support increased angiogenesis by the upregulation of VEGFA, VEGFR2, vWF, and COL3A1, exhibiting a synergistic effect with the release of VEGF-A164 and PDGF-BB after 21 days in vivo. The results of this study proved that the ES patch reduced cellular toxicity and may be tailored to have a dual release of growth factors promoting localized neovascularization.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neovascularização Fisiológica / Miócitos Cardíacos / Fator A de Crescimento do Endotélio Vascular / Proliferação de Células / Nanopartículas / Becaplermina Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neovascularização Fisiológica / Miócitos Cardíacos / Fator A de Crescimento do Endotélio Vascular / Proliferação de Células / Nanopartículas / Becaplermina Limite: Animals Idioma: En Ano de publicação: 2018 Tipo de documento: Article