Your browser doesn't support javascript.
loading
Sub-20 nm Carbon Nanoparticles with Expanded Interlayer Spacing for High-Performance Potassium Storage.
Gan, Qingmeng; Xie, Jiwei; Zhu, Youhuan; Zhang, Fangchang; Zhang, Peisen; He, Zhen; Liu, Suqin.
Afiliação
  • Gan Q; College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources , Central South University , Changsha , Hunan 410083 , P. R. China.
  • Xie J; Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China.
  • Zhu Y; Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China.
  • Zhang F; Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China.
  • Zhang P; Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , P. R. China.
  • He Z; Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.
  • Liu S; College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources , Central South University , Changsha , Hunan 410083 , P. R. China.
ACS Appl Mater Interfaces ; 11(1): 930-939, 2019 Jan 09.
Article em En | MEDLINE | ID: mdl-30550259
Carbon materials are most promising candidates for potassium-ion battery (PIB) anodes because of their high electrical conductivities, rational potassium storage capabilities, and low costs. However, the large volume change during the K-ion insertion/extraction and the sluggish kinetics of K-ion diffusion inhibit the development of carbon-based materials for PIBs. Here, under the guidance of density functional theory, N/P-codoped ultrafine (≤20 nm) carbon nanoparticles (NP-CNPs) with an expanded interlayer distance, improved electrical conductivity, shortened diffusion distance of K ions, and promoted adsorption capability toward K ions are synthesized through a facile solvent-free method as a high-performance anode material for PIBs. The NP-CNPs show a high capacity of 270 mA h g-1 at 0.2 A g-1, a remarkable rate capability of 157 mA h g-1 at an extremely high rate of 5.0 A g-1, and an ultralong cycle life with a high capacity of 190 mA h g-1 and a retention of 86.4% at 1.0 A g-1 after 4000 cycles. The potassium storage mechanism and low volume expansion for NP-CNPs are revealed through cyclic voltammetry, in situ Raman, and ex situ XRD. This work paves a new way to design and fabricate carbon-based nanostructures with high reversible capacity, great rate capability, and stable long-term performance.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article