Your browser doesn't support javascript.
loading
Around the clock: gradient shape and noise impact the evolution of oscillatory segmentation dynamics.
Vroomans, Renske M A; Hogeweg, Paulien; Ten Tusscher, Kirsten H W J.
Afiliação
  • Vroomans RMA; 1Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
  • Hogeweg P; 2Theoretical Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, Netherlands.
  • Ten Tusscher KHWJ; 2Theoretical Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, Netherlands.
Evodevo ; 9: 24, 2018.
Article em En | MEDLINE | ID: mdl-30555670
BACKGROUND: Segmentation, the subdivision of the major body axis into repeated elements, is considered one of the major evolutionary innovations in bilaterian animals. In all three segmented animal clades, the predominant segmentation mechanism is sequential segmentation, where segments are generated one by one in anterior-posterior order from a posterior undifferentiated zone. In vertebrates and arthropods, sequential segmentation is thought to arise from a clock-and-wavefront-type mechanism, where oscillations in the posterior growth zone are transformed into a segmental prepattern in the anterior by a receding wavefront. Previous evo-devo simulation studies have demonstrated that this segmentation type repeatedly arises, supporting the idea of parallel evolutionary origins in these animal clades. Sequential segmentation has been studied most extensively in vertebrates, where travelling waves have been observed that reflect the slowing down of oscillations prior to their cessation and where these oscillations involve a highly complex regulatory network. It is currently unclear under which conditions this oscillator complexity and slowing should be expected to evolve, how they are related and to what extent similar properties should be expected for sequential segmentation in other animal species. RESULTS: To investigate these questions, we extend a previously developed computational model for the evolution of segmentation. We vary the slope of the posterior morphogen gradient and the strength of gene expression noise. We find that compared to a shallow gradient, a steep morphogen gradient allows for faster evolution and evolved oscillator networks are simpler. Furthermore, under steep gradients, damped oscillators often evolve, whereas shallow gradients appear to require persistent oscillators which are regularly accompanied by travelling waves, indicative of a frequency gradient. We show that gene expression noise increases the likelihood of evolving persistent oscillators under steep gradients and of evolving frequency gradients under shallow gradients. Surprisingly, we find that the evolutions of oscillator complexity and travelling waves are not correlated, suggesting that these properties may have evolved separately. CONCLUSIONS: Based on our findings, we suggest that travelling waves may have evolved in response to shallow morphogen gradients and gene expression noise. These two factors may thus also be responsible for the observed differences between different species within both the arthropod and chordate phyla.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article