Your browser doesn't support javascript.
loading
MiR-192-5p in the Kidney Protects Against the Development of Hypertension.
Baker, Maria Angeles; Wang, Feng; Liu, Yong; Kriegel, Alison J; Geurts, Aron M; Usa, Kristie; Xue, Hong; Wang, Dandan; Kong, Yiwei; Liang, Mingyu.
Afiliação
  • Baker MA; From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).
  • Wang F; From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).
  • Liu Y; Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.W., Y.K.).
  • Kriegel AJ; From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).
  • Geurts AM; From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).
  • Usa K; From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).
  • Xue H; From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).
  • Wang D; From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).
  • Kong Y; From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).
  • Liang M; From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).
Hypertension ; 73(2): 399-406, 2019 02.
Article em En | MEDLINE | ID: mdl-30595117
MicroRNA miR-192-5p is one of the most abundant microRNAs in the kidney and targets the mRNA for ATP1B1 (ß1 subunit of Na+/K+-ATPase). Na+/K+-ATPase drives renal tubular reabsorption. We hypothesized that miR-192-5p in the kidney would protect against the development of hypertension. We found miR-192-5p levels were significantly lower in kidney biopsy specimens from patients with hypertension (n=8) or hypertensive nephrosclerosis (n=32) compared with levels in controls (n=10). Similarly, Dahl salt-sensitive (SS) rats showed a reduced abundance of miR-192-5p in the renal cortex compared with congenic SS.13BN26 rats that had reduced salt sensitivity (n=9; P<0.05). Treatment with anti-miR-192-5p delivered through renal artery injection in uninephrectomized SS.13BN26 rats exacerbated hypertension significantly. Mean arterial pressure on a 4% NaCl high-salt diet at day 14 post anti-miR-192-5p treatment was 16 mm Hg higher than in rats treated with scrambled anti-miR (n=8 and 6; P<0.05). Similarly, Mir192 knockout mice on the high-salt diet treated with Ang II (angiotensin II) for 14 days exhibited a mean arterial pressure 22 mm Hg higher than wild-type mice (n=9 and 5; P<0.05). Furthermore, protein levels of ATP1B1 were higher in Dahl SS rats than in SS.13BN26 rats. Na+/K+-ATPase activity increased in the renal cortex of SS.13BN26 rats 9 days posttreatment with anti-miR-192-5p compared with that of control anti-miR treated rats. Intrarenal knockdown of ATP1B1 attenuated hypertension in SS.13BN26 rats with intrarenal knockdown of miR-192-5p. In conclusion, miR-192-5p in the kidney protects against the development of hypertension, which is mediated, at least in part, by targeting Atp1b1.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: ATPase Trocadora de Sódio-Potássio / MicroRNAs / Hipertensão / Rim Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: ATPase Trocadora de Sódio-Potássio / MicroRNAs / Hipertensão / Rim Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article