Your browser doesn't support javascript.
loading
Nanoscale Wetting and Energy Transmission at Solid/Liquid Interfaces.
Tomko, John A; Olson, David H; Giri, Ashutosh; Gaskins, John T; Donovan, Brian F; O'Malley, Sean M; Hopkins, Patrick E.
Afiliação
  • Donovan BF; Department of Physics , United States Naval Academy , Annapolis , Maryland 21402 , United States.
  • O'Malley SM; Department of Physics , Rutgers University-Camden , Camden , New Jersey 08102 , United States.
Langmuir ; 35(6): 2106-2114, 2019 Feb 12.
Article em En | MEDLINE | ID: mdl-30624942
Understanding the effects and limitations of solid/liquid interfaces on energy transport is crucial to applications ranging from nanoscale thermal engineering to chemical synthesis. Until now, the majority of experimental evidence regarding solid/liquid interactions has been limited to macroscale observations and experiments. The lack of experimental works exploring nanoscale solid/liquid interactions has been accentuated as the body of knowledge from theory and simulations at these scales has exploded in recent years. In this study, we expand on current nanoscale thermal measurement techniques in order to more fully understand solid/liquid interfacial energy transport. We use thermal ablation threshold measurements on thick Au films in various liquids as a metric to describe thermal transport at the Au/liquid interface. Furthermore, using ultrafast pump-probe experiments, we gain insight into this transport through picosecond ultrasonic coupling at solid/liquid interfaces with known macroscopic observations. We find significant variations in both the ablation threshold and the damping of the acoustic modes within the Au films depending on nanoscopic interactions at the solid/liquid interface rather than typical macroscale metrics such as acoustic mismatch, measured contact angle, and work of adhesion.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article