Your browser doesn't support javascript.
loading
Germanium vertically light-emitting micro-gears generating orbital angular momentum.
Opt Express ; 26(26): 34675-34688, 2018 Dec 24.
Article em En | MEDLINE | ID: mdl-30650888
Germanium (Ge) is capturing researchers' interest as a possible optical gain medium implementable on complementary metal-oxide-semiconductor (CMOS) chips. Band-gap engineering techniques, relying mainly on tensile strain, are required to overcome the indirect band-gap nature of bulk Ge and promote electron injection into the direct-gap valley. We used Ge on silicon on insulator (Ge-on-SOI) wafers with a high-crystalline-quality Ge layer to fabricate Ge micro-gears on silicon (Si) pillars. Micro-gears are created by etching a periodic grating-like pattern on the circumference of a conventional micro-disk, resulting in a gear shape. Thermal built-in stresses within the SiO2 layers that encapsulate the micro-gears were used to impose tensile strain on Ge. Biaxial tensile strain values ranging from 0.3-0.5% are estimated based on Raman spectroscopy measurements and finite-element method (FEM) simulations. Multiple sharp-peak resonances within the Ge direct-gap were detected at room temperature by photo-luminescence (PL) measurements. By investigating the micro-gears spectrum using finite-difference time-domain (FDTD) simulations, we identified vertically emitted optical modes with non-zero orbital angular momentum (OAM). To our best knowledge, this is the first demonstration of OAM generation within a Ge light source.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2018 Tipo de documento: Article