Your browser doesn't support javascript.
loading
Biallelic variants in LARS2 and KARS cause deafness and (ovario)leukodystrophy.
van der Knaap, Marjo S; Bugiani, Marianna; Mendes, Marisa I; Riley, Lisa G; Smith, Desiree E C; Rudinger-Thirion, Joëlle; Frugier, Magali; Breur, Marjolein; Crawford, Joanna; van Gaalen, Judith; Schouten, Meyke; Willems, Marjolaine; Waisfisz, Quinten; Mau-Them, Frederic Tran; Rodenburg, Richard J; Taft, Ryan J; Keren, Boris; Christodoulou, John; Depienne, Christel; Simons, Cas; Salomons, Gajja S; Mochel, Fanny.
Afiliação
  • van der Knaap MS; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Bugiani M; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Mendes MI; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Riley LG; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Smith DEC; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Rudinger-Thirion J; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Frugier M; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Breur M; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Crawford J; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • van Gaalen J; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Schouten M; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Willems M; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Waisfisz Q; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Mau-Them FT; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Rodenburg RJ; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Taft RJ; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Keren B; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Christodoulou J; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Depienne C; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Simons C; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Salomons GS; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
  • Mochel F; From the Departments of Child Neurology (M.S.v.d.K., M. Breur) and Neuropathology (M. Bugiani, M. Breur), and Metabolic Unit, Department of Clinical Chemistry (M.I.M., D.E.C.S., G.S.S.), Amsterdam University Medical Centers and Amsterdam Neuroscience; Department of Functional Genomics (M.S.v.d.K.),
Neurology ; 92(11): e1225-e1237, 2019 03 12.
Article em En | MEDLINE | ID: mdl-30737337
OBJECTIVE: To describe the leukodystrophy caused by pathogenic variants in LARS2 and KARS, encoding mitochondrial leucyl transfer RNA (tRNA) synthase and mitochondrial and cytoplasmic lysyl tRNA synthase, respectively. METHODS: We composed a group of 5 patients with leukodystrophy, in whom whole-genome or whole-exome sequencing revealed pathogenic variants in LARS2 or KARS. Clinical information, brain MRIs, and postmortem brain autopsy data were collected. We assessed aminoacylation activities of purified mutant recombinant mitochondrial leucyl tRNA synthase and performed aminoacylation assays on patients' lymphoblasts and fibroblasts. RESULTS: Patients had a combination of early-onset deafness and later-onset neurologic deterioration caused by progressive brain white matter abnormalities on MRI. Female patients with LARS2 pathogenic variants had premature ovarian failure. In 2 patients, MRI showed additional signs of early-onset vascular abnormalities. In 2 other patients with LARS2 and KARS pathogenic variants, magnetic resonance spectroscopy revealed elevated white matter lactate, suggesting mitochondrial disease. Pathology in one patient with LARS2 pathogenic variants displayed evidence of primary disease of oligodendrocytes and astrocytes with lack of myelin and deficient astrogliosis. Aminoacylation activities of purified recombinant mutant leucyl tRNA synthase showed a 3-fold loss of catalytic efficiency. Aminoacylation assays on patients' lymphoblasts and fibroblasts showed about 50% reduction of enzyme activity. CONCLUSION: This study adds LARS2 and KARS pathogenic variants as gene defects that may underlie deafness, ovarian failure, and leukodystrophy with mitochondrial signature. We discuss the specific MRI characteristics shared by leukodystrophies caused by mitochondrial tRNA synthase defects. We propose to add aminoacylation assays as biochemical diagnostic tools for leukodystrophies.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças Ovarianas / Encéfalo / Surdez / Leucoencefalopatias / Aminoacil-tRNA Sintetases / Lisina-tRNA Ligase Limite: Adult / Child / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doenças Ovarianas / Encéfalo / Surdez / Leucoencefalopatias / Aminoacil-tRNA Sintetases / Lisina-tRNA Ligase Limite: Adult / Child / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2019 Tipo de documento: Article