Your browser doesn't support javascript.
loading
Novel dealloying-fabricated NiCo2S4 nanoparticles with excellent cycling performance for supercapacitors.
Wang, Haiyang; Liang, Miaomiao; Ma, Chen; Shi, Wenyu; Duan, Dong; He, Gege; Sun, Zhanbo.
Afiliação
  • Wang H; School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Key Laboratory of Shaanxi for Advanced Functional Materials and Mesoscopic Physics, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
Nanotechnology ; 30(23): 235402, 2019 Jun 07.
Article em En | MEDLINE | ID: mdl-30743256
ABSTRACT
In this work, NiCo2S4 nanoparticles for supercapacitors are successfully synthesized with a top-down strategy, using a novel dealloying method with an ion exchange reaction. The surface morphology and x-ray diffraction investigations demonstrated that NiCo2S4 nanoparticles are interconnected by ligaments of the synthesized sample. The dealloyed NiCo2S4 shows an enhanced electrochemical performance of about 1132.5 F g-1 at 0.5 A g-1; kinetic analysis implies a surface-controlled contribution from NiCo2S4 (53.86% capacitive contributions). Notably, the NiCo2S4//AC (active carbon) device displays a comparatively high energy density (22.83 Wh kg-1), maximum power density (1327.1 W kg-1) and superior cycling performance (capacitance retention of 108% after 30 000 cycles).

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article