Your browser doesn't support javascript.
loading
Schnyder corneal dystrophy-associated UBIAD1 inhibits ER-associated degradation of HMG CoA reductase in mice.
Jo, Youngah; Hamilton, Jason S; Hwang, Seonghwan; Garland, Kristina; Smith, Gennipher A; Su, Shan; Fuentes, Iris; Neelam, Sudha; Thompson, Bonne M; McDonald, Jeffrey G; DeBose-Boyd, Russell A.
Afiliação
  • Jo Y; Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • Hamilton JS; Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • Hwang S; Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • Garland K; Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • Smith GA; Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • Su S; Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • Fuentes I; Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • Neelam S; Department of Ophthalmology, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • Thompson BM; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • McDonald JG; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
  • DeBose-Boyd RA; Departments of Molecular Genetics, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States.
Elife ; 82019 02 20.
Article em En | MEDLINE | ID: mdl-30785396
Autosomal-dominant Schnyder corneal dystrophy (SCD) is characterized by corneal opacification owing to overaccumulation of cholesterol. SCD is caused by mutations in UBIAD1, which utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize vitamin K2. Using cultured cells, we previously showed that sterols trigger binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase (HMGCR), thereby inhibiting its endoplasmic reticulum (ER)-associated degradation (ERAD) (Schumacher et al. 2015). GGpp triggers release of UBIAD1 from HMGCR, allowing maximal ERAD and ER-to-Golgi transport of UBIAD1. SCD-associated UBIAD1 resists GGpp-induced release and is sequestered in ER to inhibit ERAD. We now report knockin mice expressing SCD-associated UBIAD1 accumulate HMGCR in several tissues resulting from ER sequestration of mutant UBIAD1 and inhibition of HMGCR ERAD. Corneas from aged knockin mice exhibit signs of opacification and sterol overaccumulation. These results establish the physiological significance of UBIAD1 in cholesterol homeostasis and indicate inhibition of HMGCR ERAD contributes to SCD pathogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Distrofias Hereditárias da Córnea / Dimetilaliltranstransferase / Retículo Endoplasmático / Hidroximetilglutaril-CoA Redutases Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Distrofias Hereditárias da Córnea / Dimetilaliltranstransferase / Retículo Endoplasmático / Hidroximetilglutaril-CoA Redutases Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article