Your browser doesn't support javascript.
loading
Chaos analysis and explicit series solutions to the seasonally forced SIR epidemic model.
Duarte, Jorge; Januário, Cristina; Martins, Nuno; Rogovchenko, Svitlana; Rogovchenko, Yuriy.
Afiliação
  • Duarte J; Department of Mathematics, Instituto Superior de Engenharia de Lisboa - ISEL, Rua Conselheiro Emídio Navarro 1, 1949-014, Lisbon, Portugal. jduarte@adm.isel.pt.
  • Januário C; Mathematics Department, Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal. jduarte@adm.isel.pt.
  • Martins N; Department of Mathematics, Instituto Superior de Engenharia de Lisboa - ISEL, Rua Conselheiro Emídio Navarro 1, 1949-014, Lisbon, Portugal.
  • Rogovchenko S; Department of Mathematics, Center for Research and Development in Mathematics and Applications (CIDMA), University of Aveiro, 3810-193, Aveiro, Portugal.
  • Rogovchenko Y; Mathematics Department, Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
J Math Biol ; 78(7): 2235-2258, 2019 06.
Article em En | MEDLINE | ID: mdl-30809691
Despite numerous studies of epidemiological systems, the role of seasonality in the recurrent epidemics is not entirely understood. During certain periods of the year incidence rates of a number of endemic infectious diseases may fluctuate dramatically. This influences the dynamics of mathematical models describing the spread of infection and often leads to chaotic oscillations. In this paper, we are concerned with a generalization of a classical Susceptible-Infected-Recovered epidemic model which accounts for seasonal effects. Combining numerical and analytic techniques, we gain new insights into the complex dynamics of a recurrent disease influenced by the seasonality. Computation of the Lyapunov spectrum allows us to identify different chaotic regimes, determine the fractal dimension and estimate the predictability of the appearance of attractors in the system. Applying the homotopy analysis method, we obtain series solutions to the original nonautonomous SIR model with a high level of accuracy and use these approximations to analyze the dynamics of the system. The efficiency of the method is guaranteed by the optimal choice of an auxiliary control parameter which ensures the rapid convergence of the series to the exact solution of the forced SIR epidemic model.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estações do Ano / Doenças Transmissíveis / Surtos de Doenças / Suscetibilidade a Doenças / Modelos Biológicos / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Estações do Ano / Doenças Transmissíveis / Surtos de Doenças / Suscetibilidade a Doenças / Modelos Biológicos / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article