Your browser doesn't support javascript.
loading
Dust Ablation on the Giant Planets: Consequences for Stratospheric Photochemistry.
Moses, Julianne I; Poppe, Andrew R.
Afiliação
  • Moses JI; Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA.
  • Poppe AR; Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720, USA.
Icarus ; 297: 33-58, 2017 Nov 15.
Article em En | MEDLINE | ID: mdl-30842686
ABSTRACT
Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe, A.R. et al. [2016], Icarus 264, 369), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0 - 0.7 + 2.2 × 10 7 O atoms cm-2 s-1 to Jupiter, 7.4 - 5.1 + 16 × 10 4 cm-2 s-1 to Saturn, 8.9 - 6.1 + 19 × 10 4 cm-2 s-1 to Uranus, and 7.5 - 5.1 + 16 × 10 5 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article