Your browser doesn't support javascript.
loading
Rotavirus VP6 protein as a bio-electrochemical scaffold: Molecular dynamics and experimental electrochemistry.
Garcia-Garcia, W I; Vidal-Limon, A; Arrocha-Arcos, A A; Palomares, L A; Ramirez, O T; Miranda-Hernández, M.
Afiliação
  • Garcia-Garcia WI; Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210 Cuernavaca, Morelos, Mexico; Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, 62580 Temixco, Morelos, Mexico.
  • Vidal-Limon A; Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, AP 356, 22860 Ensenada, B.C., Mexico.
  • Arrocha-Arcos AA; Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, 62580 Temixco, Morelos, Mexico.
  • Palomares LA; Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210 Cuernavaca, Morelos, Mexico.
  • Ramirez OT; Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210 Cuernavaca, Morelos, Mexico.
  • Miranda-Hernández M; Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco, 62580 Temixco, Morelos, Mexico. Electronic address: mmh@ier.unam.mx.
Bioelectrochemistry ; 127: 180-186, 2019 Jun.
Article em En | MEDLINE | ID: mdl-30849563
This paper reports a theoretical and experimental investigation on the recombinant protein rotavirus VP6 as a bioelectrochemical interface. Our motivation arises from the highly active zones of VP6 which can interact with biological structures and metals, as well as its useful features such as self-assembly, polymorphism, and active surface charge. A molecular simulation study was performed to analyze the charge transfer properties of theVP6 trimer under an applied electric field. The electrostatic properties were evaluated via the nonlinear second-order Poisson-Boltzmann equation, using finite element methods based on parameter discretization and calculation of solute/solvent interaction forces, which account for mean-field screening effects. The electrochemical study validated the theoretical predictions for VP6 in their different assemblies (trimers and nanotubes) when they are used as electrodes in 10 mM K3[Fe(CN)6], 1 M KCl. Applying a potential sweep promotes charge transfer, facilitates redox activity of the ferricyanide ion. Furthermore, protein assemblies decreased electrode electrical resistance and enabled gold particle electrodeposition on the protein VP6. These results suggest that VP6 is a promising conductive biomaterial that promotes charge transfer of redox probes and could be used as a new scaffold to create bio-electrochemical interfaces.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Rotavirus / Proteínas do Capsídeo / Nanotubos / Proteínas Imobilizadas / Antígenos Virais Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Rotavirus / Proteínas do Capsídeo / Nanotubos / Proteínas Imobilizadas / Antígenos Virais Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article