Rotavirus VP6 protein as a bio-electrochemical scaffold: Molecular dynamics and experimental electrochemistry.
Bioelectrochemistry
; 127: 180-186, 2019 Jun.
Article
em En
| MEDLINE
| ID: mdl-30849563
This paper reports a theoretical and experimental investigation on the recombinant protein rotavirus VP6 as a bioelectrochemical interface. Our motivation arises from the highly active zones of VP6 which can interact with biological structures and metals, as well as its useful features such as self-assembly, polymorphism, and active surface charge. A molecular simulation study was performed to analyze the charge transfer properties of theVP6 trimer under an applied electric field. The electrostatic properties were evaluated via the nonlinear second-order Poisson-Boltzmann equation, using finite element methods based on parameter discretization and calculation of solute/solvent interaction forces, which account for mean-field screening effects. The electrochemical study validated the theoretical predictions for VP6 in their different assemblies (trimers and nanotubes) when they are used as electrodes in 10â¯mMâ¯K3[Fe(CN)6], 1â¯M KCl. Applying a potential sweep promotes charge transfer, facilitates redox activity of the ferricyanide ion. Furthermore, protein assemblies decreased electrode electrical resistance and enabled gold particle electrodeposition on the protein VP6. These results suggest that VP6 is a promising conductive biomaterial that promotes charge transfer of redox probes and could be used as a new scaffold to create bio-electrochemical interfaces.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Rotavirus
/
Proteínas do Capsídeo
/
Nanotubos
/
Proteínas Imobilizadas
/
Antígenos Virais
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article