Generation of Cost-Effective Paper-Based Tissue Models through Matrix-Assisted Sacrificial 3D Printing.
Nano Lett
; 19(6): 3603-3611, 2019 06 12.
Article
em En
| MEDLINE
| ID: mdl-31010289
Due to the combined advantages of cellulose and nanoscale (diameter 20-60 nm), bacterial cellulose possesses a series of attractive features including its natural origin, moderate biosynthesis process, good biocompatibility, and cost-effectiveness. Moreover, bacterial cellulose nanofibers can be conveniently processed into three-dimensional (3D) intertwined structures and form stable paper devices after simple drying. These advantages make it suitable as the material for construction of organ-on-a-chip devices using matrix-assisted sacrificial 3D printing. We successfully fabricated various microchannel structures embedded in the bulk bacterial cellulose hydrogels and retained their integrity after the drying process. Interestingly, these paper-based devices containing hollow microchannels could be rehydrated and populated with relevant cells to form vascularized tissue models. As a proof-of-concept demonstration, we seeded human umbilical vein endothelial cells (HUVECs) into the microchannels to obtain the vasculature and inoculated the MCF-7 cells onto the surrounding matrix of the paper device to build a 3D paper-based vascularized breast tumor model. The results showed that the microchannels were perfusable, and both HUVECs and MCF-7 cells exhibited favorable proliferation behaviors. This study may provide a new strategy for constructing simple and low-cost in vitro tissue models, which may find potential applications in drug screening and personalized medicine.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Polissacarídeos Bacterianos
/
Celulose
/
Alicerces Teciduais
/
Bioimpressão
/
Impressão Tridimensional
Tipo de estudo:
Health_economic_evaluation
Limite:
Humans
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article