Your browser doesn't support javascript.
loading
Selecting Test Cases from the Electronic Health Record for Software Testing of Knowledge-Based Clinical Decision Support Systems.
Usman, Omar A; Oshiro, Connie; Chambers, Justin G; Tu, Samson W; Martins, Susana; Robinson, Amy; Goldstein, Mary K.
Afiliação
  • Usman OA; VA Palo Alto Health Care System, Palo Alto, CA.
  • Oshiro C; Stanford University, Stanford, CA.
  • Chambers JG; VA Palo Alto Health Care System, Palo Alto, CA.
  • Tu SW; VA Palo Alto Health Care System, Palo Alto, CA.
  • Martins S; Stanford University, Stanford, CA.
  • Robinson A; VA Palo Alto Health Care System, Palo Alto, CA.
  • Goldstein MK; VA Palo Alto Health Care System, Palo Alto, CA.
AMIA Annu Symp Proc ; 2018: 1046-1055, 2018.
Article em En | MEDLINE | ID: mdl-31019657
Software testing of knowledge-based clinical decision support systems is challenging, labor intensive, and expensive; yet, testing is necessary since clinical applications have heightened consequences. Thoughtful test case selection improves testing coverage while minimizing testing burden. ATHENA-CDS is a knowledge-based system that provides guideline-based recommendations for chronic medical conditions. Using the ATHENA-CDS diabetes knowledgebase, we demonstrate a generalizable approach for selecting test cases using rules/ filters to create a set of paths that mimics the system's logic. Test cases are allocated to paths using a proportion heuristic. Using data from the electronic health record, we found 1,086 cases with glycemic control above target goals. We created a total of 48 filters and 50 unique system paths, which were used to allocate 200 test cases. We show that our method generates a comprehensive set of test cases that provides adequate coverage for the testing of a knowledge-based CDS.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Sistemas de Apoio a Decisões Clínicas / Diabetes Mellitus Tipo 2 / Bases de Conhecimento / Registros Eletrônicos de Saúde Tipo de estudo: Guideline / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Sistemas de Apoio a Decisões Clínicas / Diabetes Mellitus Tipo 2 / Bases de Conhecimento / Registros Eletrônicos de Saúde Tipo de estudo: Guideline / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article