Your browser doesn't support javascript.
loading
G-estimation of structural nested mean models for competing risks data using pseudo-observations.
Tanaka, Shiro; Brookhart, M Alan; Fine, Jason P.
Afiliação
  • Tanaka S; Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho Sakyo-ku, Kyoto 606-8501, Japan.
  • Brookhart MA; Department of Epidemiology, University of North Carolina, 2105F McGavran-Greenberg Hall, Chapel Hill, North Carolina 27599, USA.
  • Fine JP; Department of Biostatistics, University of North Carolina, 3103B McGavran-Greenberg Hall, Chapel Hill, North Carolina 27599, USA.
Biostatistics ; 21(4): 860-875, 2020 10 01.
Article em En | MEDLINE | ID: mdl-31056651
This article provides methods of causal inference for competing risks data. The methods are formulated as structural nested mean models of causal effects directly related to the cumulative incidence function or subdistribution hazard, which reflect the survival experience of a subject in the presence of competing risks. The effect measures include causal risk differences, causal risk ratios, causal subdistribution hazard ratios, and causal effects of time-varying exposures. Inference is implemented by g-estimation using pseudo-observations, a technique to handle censoring. The finite-sample performance of the proposed estimators in simulated datasets and application to time-varying exposures in a cohort study of type 2 diabetes are also presented.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diabetes Mellitus Tipo 2 Tipo de estudo: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article