Your browser doesn't support javascript.
loading
Spatial Analysis of a Cat-Borne Disease Reveals That Soil pH and Clay Content Are Risk Factors for Sarcocystosis in Sheep.
Taggart, Patrick L; Stevenson, Mark A; Firestone, Simon M; McAllister, Milton M; Caraguel, Charles G B.
Afiliação
  • Taggart PL; School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
  • Stevenson MA; Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia.
  • Firestone SM; Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia.
  • McAllister MM; School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
  • Caraguel CGB; School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia.
Front Vet Sci ; 6: 127, 2019.
Article em En | MEDLINE | ID: mdl-31069240
ABSTRACT
Cat-borne parasites and their associated diseases have substantial impacts on human, livestock, and wildlife health worldwide. Despite this, large and detailed datasets that allow researchers to study broad-scale trends in the ecology of cat-borne diseases are either difficult to obtain or non-existent. One condition that is easily detected at slaughter is macroscopic sarcocystosis, a cat-borne parasitosis of sheep (Ovis aries). We conducted a cross-sectional study to describe the geographic distribution of sarcocystosis in sheep throughout South Australia and investigate ecosystem characteristics associated with the presence of disease. Data were obtained from two slaughterhouses which processed 3,865,608 sheep from 4,204 farms across 385,468 km2 of South Australia's land mass for the period 2007-2017. A Poisson point process model was developed to quantify environmental characteristics associated with higher densities of sarcocystosis-positive farms. Sarcocystosis was highly clustered on a large island off of the Australian coast and the density of sarcocystosis-positive farms increased in areas of low soil pH (intensity ratio 0.86, 95% CI 0.78, 0.95) and high clay content. We hypothesize that region was confounded by, and predominately acted as a proxy for, cat density. Our results have broader implications regarding the health, welfare, economic, and conservation impacts of other cat-borne parasitosis, such as toxoplasmosis.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article