Your browser doesn't support javascript.
loading
High temperature-induced proteomic and metabolomic profiles of a thermophilic Bacillus manusensis isolated from the deep-sea hydrothermal field of Manus Basin.
Sun, Qing-Lei; Sun, Yuan-Yuan; Zhang, Jian; Luan, Zhen-Dong; Lian, Chao; Liu, Shi-Qi; Yu, Chao.
Afiliação
  • Sun QL; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. Electronic address:
  • Sun YY; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
  • Zhang J; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Deep Sea Research Ce
  • Luan ZD; Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
  • Lian C; Deep Sea Research Center, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
  • Liu SQ; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chines
  • Yu C; CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chines
J Proteomics ; 203: 103380, 2019 07 15.
Article em En | MEDLINE | ID: mdl-31102757
ABSTRACT
Thermophiles are organisms that grow optimally at 50 °C-80 °C and studies on the survival mechanisms of thermophiles have drawn great attention. Bacillus manusensis S50-6 is the type strain of a new thermophilic species isolated from hydrothermal vent in Manus Basin. In this study, we examined the growth and global responses of S50-6 to high temperature on molecular level using multi-omics method (genomics, proteomics, and metabolomics). S50-6 grew optimally at 50 °C (Favorable, F) and poorly at 65 °C (Non-Favorable, NF); it formed spores at F but not at NF condition. At NF condition, S50-6 formed long filaments containing undivided cells. A total of 1621 proteins were identified at F and NF conditions, and 613 proteins were differentially expressed between F and NF. At NF condition, proteins of glycolysis, rRNA mature and modification, and DNA/protein repair were up-regulated, whereas proteins of sporulation and amino acid/nucleotide metabolism were down-regulated. Consistently, many metabolites associated with amino acid and nucleotide metabolic processes were down-regulated at NF condition. Our results revealed molecular strategies of deep-sea B. manusensis to survive at unfavorable high temperature and provided new insights into the thermotolerant mechanisms of thermophiles.

SIGNIFICANCE:

In this study, we systematically characterized the genomic, proteomic and metabolomic profiles of a thermophilic deep-sea Bacillus manusensis under different temperatures. Based on these analysis, we propose a model delineating the global responses of B. manusensis to unfavorable high temperature. Under unfavorable high temperature, glycolysis is a more important energy supply pathway; protein synthesis is subjected to more stringent regulation by increased tRNA modification; protein and DNA repair associated proteins are enhanced in production to promote heat survival. In contrast, energy-costing pathways, such as sporulation, are repressed, and basic metabolic pathways, such as amino acid and nucleotide metabolisms, are slowed down. Our results provide new insights into the thermotolerant mechanisms of thermophilic Bacillus.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus / Proteômica / Metabolômica / Fontes Hidrotermais / Temperatura Alta Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus / Proteômica / Metabolômica / Fontes Hidrotermais / Temperatura Alta Idioma: En Ano de publicação: 2019 Tipo de documento: Article