Your browser doesn't support javascript.
loading
Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum.
Honsho, Masanori; Dorninger, Fabian; Abe, Yuichi; Setoyama, Daiki; Ohgi, Ryohei; Uchiumi, Takeshi; Kang, Dongchon; Berger, Johannes; Fujiki, Yukio.
Afiliação
  • Honsho M; Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
  • Dorninger F; Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria.
  • Abe Y; Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
  • Setoyama D; Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
  • Ohgi R; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan.
  • Uchiumi T; Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
  • Kang D; Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
  • Berger J; Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria.
  • Fujiki Y; Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
J Biochem ; 166(4): 353-361, 2019 Oct 01.
Article em En | MEDLINE | ID: mdl-31135054
Synthesis of ethanolamine plasmalogen (PlsEtn) is regulated by modulating the stability of fatty acyl-CoA reductase 1 (Far1) on peroxisomal membrane, a rate-limiting enzyme in plasmalogen synthesis. Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis in cultured cells by altering the stability of squalene epoxidase (SQLE). However, regulation of PlsEtn synthesis and physiological consequences of plasmalogen homeostasis in tissues remain unknown. In the present study, we found that the protein but not the transcription level of Far1 in the cerebellum of the Pex14 mutant mouse expressing Pex14p lacking its C-terminal region (Pex14ΔC/ΔC) is higher than that from wild-type mouse, suggesting that Far1 is stabilized by the lowered level of PlsEtn. The protein level of SQLE was increased, whereas the transcriptional activity of the liver X receptors (LXRs), ligand-activated transcription factors of the nuclear receptor superfamily, is lowered in the cerebellum of Pex14ΔC/ΔC and the mice deficient in dihydroxyacetonephosphate acyltransferase, the initial enzyme for the synthesis of PlsEtn. These results suggest that the reduction of plasmalogens in the cerebellum more likely compromises the cholesterol homeostasis, thereby reducing the transcriptional activities of LXRs, master regulators of cholesterol homeostasis.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article