Your browser doesn't support javascript.
loading
Ultrasensitive Ebola Virus Antigen Sensing via 3D Nanoantenna Arrays.
Zang, Faheng; Su, Zhijuan; Zhou, Liangcheng; Konduru, Krishnamurthy; Kaplan, Gerardo; Chou, Stephen Y.
Afiliação
  • Zang F; Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA.
  • Su Z; Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA.
  • Zhou L; Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA.
  • Konduru K; Laboratory of Emerging Pathogens, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
  • Kaplan G; Laboratory of Emerging Pathogens, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
  • Chou SY; Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA.
Adv Mater ; 31(30): e1902331, 2019 Jul.
Article em En | MEDLINE | ID: mdl-31168856
ABSTRACT
Sensitive detection of pathogens is crucial for early disease diagnosis and quarantine, which is of tremendous need in controlling severe and fatal illness epidemics such as of Ebola virus (EBOV) disease. Serology assays can detect EBOV-specific antigens and antibodies cost-effectively without sophisticated equipment; however, they are less sensitive than reverse transcriptase polymerase chain reaction (RT-PCR) tests. Herein, a 3D plasmonic nanoantenna assay sensor is developed as an on-chip immunoassay platform for ultrasensitive detection of Ebola virus (EBOV) antigens. The EBOV sensor exhibits substantial fluorescence intensity enhancement in immunoassays compared to flat gold substrate. The nanoantenna-based biosensor successfully detects EBOV soluble glycoprotein (sGP) in human plasma down to 220 fg mL-1 , a significant 240 000-fold sensitivity improvement compared to the 53 ng mL-1 EBOV antigen detection limit of the existing rapid EBOV immunoassay. In a mock clinical trial, the sensor detects sGP-spiked human plasma samples at two times the limit of detection with 95.8% sensitivity. The results combined highlight the nanosensor's extraordinary capability of detecting EBOV antigen at ultralow concentration compared to existing immunoassay methods. It is a promising next-generation bioassay platform for early-stage disease diagnosis and pathogen detection for both public health and national security applications.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Virais de Fusão / Doença pelo Vírus Ebola / Nanoestruturas / Ebolavirus / Antígenos Virais Tipo de estudo: Clinical_trials / Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Virais de Fusão / Doença pelo Vírus Ebola / Nanoestruturas / Ebolavirus / Antígenos Virais Tipo de estudo: Clinical_trials / Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article