Your browser doesn't support javascript.
loading
Spotting plants' microfilament morphologies and nanostructures.
Almeida, Ana P; Canejo, João; Mur, Urban; Copar, Simon; Almeida, Pedro L; Zumer, Slobodan; Godinho, Maria Helena.
Afiliação
  • Almeida AP; Centro de Investigação em Materiais/Institute for Nanomodelling, Nanostructures and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
  • Canejo J; Centro de Investigação em Materiais/Institute for Nanomodelling, Nanostructures and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
  • Mur U; Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.
  • Copar S; Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.
  • Almeida PL; Centro de Investigação em Materiais/Institute for Nanomodelling, Nanostructures and Nanofabrication, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
  • Zumer S; Área Departamental de Física, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, 1959-007 Lisboa, Portugal.
  • Godinho MH; Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia; slobodan.zumer@fmf.uni-lj.si mhg@fct.unl.pt.
Proc Natl Acad Sci U S A ; 116(27): 13188-13193, 2019 07 02.
Article em En | MEDLINE | ID: mdl-31196953
The tracheary system of plant leaves is composed of a cellulose skeleton with diverse hierarchical structures. It is built of polygonally bent helical microfilaments of cellulose-based nanostructures coated by different layers, which provide them high compression resistance, elasticity, and roughness. Their function includes the transport of water and nutrients from the roots to the leaves. Unveiling details about local interactions of tracheary elements with surrounding material, which varies between plants due to adaptation to different environments, is crucial for understanding ascending fluid transport and for tracheary mechanical strength relevant to potential applications. Here we show that plant tracheary microfilaments, collected from Agapanthus africanus and Ornithogalum thyrsoides leaves, have different surface morphologies, revealed by nematic liquid crystal droplets. This results in diverse interactions among microfilaments and with the environment; the differences translate to diverse mechanical properties of entangled microfilaments and their potential applications. The presented study also introduces routes for accurate characterization of plants' microfilaments.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plantas / Citoesqueleto de Actina Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plantas / Citoesqueleto de Actina Idioma: En Ano de publicação: 2019 Tipo de documento: Article