Positive multistate protein design.
Bioinformatics
; 36(1): 122-130, 2020 01 01.
Article
em En
| MEDLINE
| ID: mdl-31199465
MOTIVATION: Structure-based computational protein design (CPD) plays a critical role in advancing the field of protein engineering. Using an all-atom energy function, CPD tries to identify amino acid sequences that fold into a target structure and ultimately perform a desired function. The usual approach considers a single rigid backbone as a target, which ignores backbone flexibility. Multistate design (MSD) allows instead to consider several backbone states simultaneously, defining challenging computational problems. RESULTS: We introduce efficient reductions of positive MSD problems to Cost Function Networks with two different fitness definitions and implement them in the Pompd (Positive Multistate Protein design) software. Pompd is able to identify guaranteed optimal sequences of positive multistate full protein redesign problems and exhaustively enumerate suboptimal sequences close to the MSD optimum. Applied to nuclear magnetic resonance and back-rubbed X-ray structures, we observe that the average energy fitness provides the best sequence recovery. Our method outperforms state-of-the-art guaranteed computational design approaches by orders of magnitudes and can solve MSD problems with sizes previously unreachable with guaranteed algorithms. AVAILABILITY AND IMPLEMENTATION: https://forgemia.inra.fr/thomas.schiex/pompd as documented Open Source. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Engenharia de Proteínas
/
Proteínas
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article