Your browser doesn't support javascript.
loading
Immunization with merozoite surface protein 2 fused to a Plasmodium-specific carrier protein elicits strain-specific and strain-transcending, opsonizing antibody.
Eacret, Jacqueline S; Gonzales, Donna M; Franks, Raymond G; Burns, James M.
Afiliação
  • Eacret JS; Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.
  • Gonzales DM; Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.
  • Franks RG; Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.
  • Burns JM; Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA. jmb53@drexel.edu.
Sci Rep ; 9(1): 9022, 2019 06 21.
Article em En | MEDLINE | ID: mdl-31227760
ABSTRACT
Vaccine trials and cohort studies in Plasmodium falciparum endemic areas indicate that naturally-acquired and vaccine-induced antibodies to merozoite surface protein 2 (MSP2) are associated with resistance to malaria. These data indicate that PfMSP2 has significant potential as a component of a multi-antigen malaria vaccine. To overcome challenges encountered with subunit malaria vaccines, we established that the use of highly immunogenic rPfMSP8 as a carrier protein for leading vaccine candidates rPfMSP119 and rPfs25 facilitated antigen production, minimized antigenic competition and enhanced induction of functional antibodies. We applied this strategy to optimize a rPfMSP2 (3D7)-based subunit vaccine by producing unfused rPfMSP2 or chimeric rPfMSP2/8 in Escherichia coli. rPfMSP2 formed fibrils, which induced splenocyte proliferation in an antigen receptor-independent, TLR2-dependent manner. However, fusion to rPfMSP8 prevented rPfMSP2 amyloid-like fibril formation. Immunization of rabbits elicited high-titer anti-PfMSP2 antibodies that recognized rPfMSP2 of the 3D7 and FC27 alleles, as well as native PfMSP2. Competition assays revealed a difference in the specificity of antibodies induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. Rabbit anti-PfMSP2/8 was superior to rPfMSP2-elicited antibody at opsonizing P. falciparum merozoites for phagocytosis. These data establish rPfMSP8 as an effective carrier for a PfMSP2-based subunit malaria vaccine.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Opsonizantes / Anticorpos Antiprotozoários / Proteínas de Protozoários / Vacinação / Malária Falciparum / Antígenos de Protozoários Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Opsonizantes / Anticorpos Antiprotozoários / Proteínas de Protozoários / Vacinação / Malária Falciparum / Antígenos de Protozoários Tipo de estudo: Observational_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article