Your browser doesn't support javascript.
loading
Optical Control of Non-Equilibrium Phonon Dynamics.
Krishnamoorthy, Aravind; Lin, Ming-Fu; Zhang, Xiang; Weninger, Clemens; Ma, Ruru; Britz, Alexander; Tiwary, Chandra Sekhar; Kochat, Vidya; Apte, Amey; Yang, Jie; Park, Suji; Li, Renkai; Shen, Xiaozhe; Wang, Xijie; Kalia, Rajiv; Nakano, Aiichiro; Shimojo, Fuyuki; Fritz, David; Bergmann, Uwe; Ajayan, Pulickel; Vashishta, Priya.
Afiliação
  • Krishnamoorthy A; Collaboratory for Advanced Computing and Simulations , University of Southern California , Los Angeles , California 90089 , United States.
  • Lin MF; Linac Coherent Light Source , Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Zhang X; Stanford PULSE Institute , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Weninger C; Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States.
  • Ma R; Linac Coherent Light Source , Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Britz A; Stanford PULSE Institute , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Tiwary CS; Collaboratory for Advanced Computing and Simulations , University of Southern California , Los Angeles , California 90089 , United States.
  • Kochat V; Linac Coherent Light Source , Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Apte A; Stanford PULSE Institute , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Yang J; Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States.
  • Park S; Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States.
  • Li R; Department of Materials Science and NanoEngineering , Rice University , Houston , Texas 77005 , United States.
  • Shen X; SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Wang X; SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Kalia R; SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Nakano A; SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Shimojo F; SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
  • Fritz D; Collaboratory for Advanced Computing and Simulations , University of Southern California , Los Angeles , California 90089 , United States.
  • Bergmann U; Collaboratory for Advanced Computing and Simulations , University of Southern California , Los Angeles , California 90089 , United States.
  • Ajayan P; Department of Physics , Kumamoto University , Kumamoto 860-8555 , Japan.
  • Vashishta P; Linac Coherent Light Source , Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory , Menlo Park , California 94025 , United States.
Nano Lett ; 19(8): 4981-4989, 2019 Aug 14.
Article em En | MEDLINE | ID: mdl-31260315
ABSTRACT
The light-induced selective population of short-lived far-from-equilibrium vibration modes is a promising approach for controlling ultrafast and irreversible structural changes in functional nanomaterials. However, this requires a detailed understanding of the dynamics and evolution of these phonon modes and their coupling to the excited-state electronic structure. Here, we combine femtosecond mega-electronvolt electron diffraction experiments on a prototypical layered material, MoTe2, with non-adiabatic quantum molecular dynamics simulations and ab initio electronic structure calculations to show how non-radiative energy relaxation pathways for excited electrons can be tuned by controlling the optical excitation energy. We show how the dominant intravalley and intervalley scattering mechanisms for hot and band-edge electrons leads to markedly different transient phonon populations evident in electron diffraction patterns. This understanding of how tuning optical excitations affect phonon populations and atomic motion is critical for efficiently controlling light-induced structural transitions of optoelectronic devices.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article