Your browser doesn't support javascript.
loading
Microbiome dynamics and phaC synthase genes selected in a pilot plant producing polyhydroxyalkanoate from the organic fraction of urban waste.
Crognale, Simona; Tonanzi, Barbara; Valentino, Francesco; Majone, Mauro; Rossetti, Simona.
Afiliação
  • Crognale S; Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria, km 29.300, Monterotondo, 00015 Rome, Italy.
  • Tonanzi B; Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria, km 29.300, Monterotondo, 00015 Rome, Italy.
  • Valentino F; Department of Chemistry, "La Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
  • Majone M; Department of Chemistry, "La Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
  • Rossetti S; Water Research Institute, National Research Council of Italy (IRSA - CNR), Via Salaria, km 29.300, Monterotondo, 00015 Rome, Italy. Electronic address: rossetti@irsa.cnr.it.
Sci Total Environ ; 689: 765-773, 2019 Nov 01.
Article em En | MEDLINE | ID: mdl-31280158
ABSTRACT
This study analyses the bacterial population dynamics of a mixed microbial community (MMC) selected in a pilot plant producing polyhydroxyalkanoate (PHA) from the fermentation of the organic fraction of urban waste (OFMSW) and sewage sludge (SS). 16S rRNA gene high-throughput sequencing revealed the occurrence of a variety of PHA accumulating bacteria that ensured a stable PHA production in an open system operating with real substrates and without temperature control. The Volatile Fatty Acids (VFA) changes in the feed and the temperature variation affected the dynamics of the PHA-accumulating bacteria over the plant operation. Remarkably, the higher PHA content was associated to a MMC largely comprising of Hydrogenophaga species during the operation at higher working temperature. The involvement of a heterogeneous PHA-accumulating MMC was associated with a high phaC synthase genes biodiversity confirming the occurrence of a functional redundancy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esgotos / Bactérias / Fenômenos Fisiológicos Bacterianos / Poli-Hidroxialcanoatos / Águas Residuárias / Microbiota Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esgotos / Bactérias / Fenômenos Fisiológicos Bacterianos / Poli-Hidroxialcanoatos / Águas Residuárias / Microbiota Idioma: En Ano de publicação: 2019 Tipo de documento: Article