Your browser doesn't support javascript.
loading
Paired associative stimulation improves synaptic plasticity and functional outcomes after cerebral ischemia.
Hu, Yan; Guo, Tie-Cheng; Zhang, Xiang-Yu; Tian, Jun; Lu, Yin-Shan.
Afiliação
  • Hu Y; Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology; Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China.
  • Guo TC; Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China.
  • Zhang XY; Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province; Department of Rehabilitation Medicine, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
  • Tian J; Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China.
  • Lu YS; Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China.
Neural Regen Res ; 14(11): 1968-1976, 2019 Nov.
Article em En | MEDLINE | ID: mdl-31290455
ABSTRACT
Paired associative stimulation is a relatively new non-invasive brain stimulation technique that combines transcranial magnetic stimulation and peripheral nerve stimulation. The effects of paired associative stimulation on the excitability of the cerebral cortex can vary according to the time interval between the transcranial magnetic stimulation and peripheral nerve stimulation. We established a model of cerebral ischemia in rats via transient middle cerebral artery occlusion. We administered paired associative stimulation with a frequency of 0.05 Hz 90 times over 4 weeks. We then evaluated spatial learning and memory using the Morris water maze. Changes in the cerebral ultra-structure and synaptic plasticity were assessed via transmission electron microscopy and a 64-channel multi-electrode array. We measured mRNA and protein expression levels of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 in the hippocampus using a real-time polymerase chain reaction and western blot assay. Paired associative stimulation treatment significantly improved learning and memory in rats subjected to cerebral ischemia. The ultra-structures of synapses in the CA1 area of the hippocampus in rats subjected to cerebral ischemia were restored by paired associative stimulation. Long-term potentiation at synapses in the CA3 and CA1 regions of the hippocampus was enhanced as well. The protein and mRNA expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1 increased after paired associative stimulation treatment. These data indicate that paired associative stimulation can protect cognition after cerebral ischemia. The observed effect may be mediated by increases in the mRNA and protein expression of brain-derived neurotrophic factor and N-methyl-D-aspartate receptor 1, and by enhanced synaptic plasticity in the CA1 area of the hippocampus. The animal experiments were approved by the Animal Ethics Committee of Tongji Medical College, Huazhong University of Science & Technology, China (approval No. TJ-A20151102) on July 11, 2015.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article