Your browser doesn't support javascript.
loading
Effect of "ribosome engineering" on the transcription level and production of S. albus indigenous secondary metabolites.
Lopatniuk, Maria; Myronovskyi, Maksym; Nottebrock, Alessia; Busche, Tobias; Kalinowski, Jörn; Ostash, Bohdan; Fedorenko, Viktor; Luzhetskyy, Andriy.
Afiliação
  • Lopatniuk M; Department Pharmacy, Actinobacteria Metabolic Engineering Group, Saarland University, Uni Campus C2.3, 66123, Saarbrücken, Germany.
  • Myronovskyi M; Department Pharmacy, Actinobacteria Metabolic Engineering Group, Saarland University, Uni Campus C2.3, 66123, Saarbrücken, Germany.
  • Nottebrock A; Department Pharmacy, Actinobacteria Metabolic Engineering Group, Saarland University, Uni Campus C2.3, 66123, Saarbrücken, Germany.
  • Busche T; Centre for Biotechnology (CiBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
  • Kalinowski J; Centre for Biotechnology (CiBiTec), Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
  • Ostash B; Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskyy Street., 4, Lviv, 79005, Ukraine.
  • Fedorenko V; Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskyy Street., 4, Lviv, 79005, Ukraine.
  • Luzhetskyy A; Department Pharmacy, Actinobacteria Metabolic Engineering Group, Saarland University, Uni Campus C2.3, 66123, Saarbrücken, Germany. Andriy.Luzhetskyy@helmholtz-hips.de.
Appl Microbiol Biotechnol ; 103(17): 7097-7110, 2019 Sep.
Article em En | MEDLINE | ID: mdl-31324940
ABSTRACT
Significant resources are invested into efforts to improve the production yields of natural products from Actinobacteria, a well-recognized source of leads for several industries, most notably pharmaceutical one. Introduction of changes into genes for ribosomal protein S12 (rpsL) and/or 16S rRNA methylation (rsmG) is one of traditional approaches (referred to as ribosomal engineering) towards actinobacterial strain improvement. Yet, true potential of ribosome engineering remains unknown as it is currently coupled to empirical selection for aminoglycoside-resistance; rpsL mutations without such phenotypic expression could not be isolated. Here, we report a systematic and rational ribosome engineering approach to study the effect of a range of rpsL mutations on the production level of different biosynthetic gene clusters (BGC). The severe effect of diverse rpsL mutations together with deletion of rsmG engineered in Streptomyces albus has been revealed on the transcription level of several indigenous BGCs. The aforementioned mutations strongly impacted the transcription of indigenous BGCs, possibly because they alter the transcription of BGC-situated and global regulatory genes. The rsmG deletion with certain rpsL mutations can have a synergistic effect on the transcription level of indigenous BGCs. Our work thus provides the first streptomycete platform for rational engineering and study of virtually any nonlethal rpsL mutation. The tremendous effect of ribosome engineering on the transcription profile of the strains was reported for the first time. A library of described S. albus rpsL*/ΔrsmG strains represents a useful tool for overproducing known secondary metabolites and activating silent biosynthetic gene clusters in Actinobacteria.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Ribossômicas / Streptomyces / Proteínas de Bactérias / Produtos Biológicos Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Ribossômicas / Streptomyces / Proteínas de Bactérias / Produtos Biológicos Idioma: En Ano de publicação: 2019 Tipo de documento: Article