Your browser doesn't support javascript.
loading
Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV.
Niu, Qingli; Liu, Zhiqing; Alamer, Edrous; Fan, Xiuzhen; Chen, Haiying; Endsley, Janice; Gelman, Benjamin B; Tian, Bing; Kim, Jerome H; Michael, Nelson L; Robb, Merlin L; Ananworanich, Jintanat; Zhou, Jia; Hu, Haitao.
Afiliação
  • Niu Q; Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.
  • Liu Z; Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences.
  • Alamer E; Chemical Biology Program, Department of Pharmacology and Toxicology.
  • Fan X; Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.
  • Chen H; Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences.
  • Endsley J; Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.
  • Gelman BB; Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences.
  • Tian B; Chemical Biology Program, Department of Pharmacology and Toxicology.
  • Kim JH; Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas, USA.
  • Michael NL; Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences.
  • Robb ML; Department of Pathology, and.
  • Ananworanich J; Department of Internal Medicine, Sealy Center for Molecular Medicine, UTMB, Galveston, Texas, USA.
  • Zhou J; International Vaccine Institute, Gwanak-gu, Seoul, South Korea.
  • Hu H; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
J Clin Invest ; 129(8): 3361-3373, 2019 07 22.
Article em En | MEDLINE | ID: mdl-31329163
ABSTRACT
HIV integrates its provirus into the host genome and establishes latent infection. Antiretroviral therapy (ART) can control HIV viremia, but cannot eradicate or cure the virus. Approaches targeting host epigenetic machinery to repress HIV, leading to an aviremic state free of ART, are needed. Bromodomain and extraterminal (BET) family protein BRD4 is an epigenetic reader involved in HIV transcriptional regulation. Using structure-guided drug design, we identified a small molecule (ZL0580) that induced epigenetic suppression of HIV via BRD4. We showed that ZL0580 induced HIV suppression in multiple in vitro and ex vivo cell models. Combination treatment of cells of aviremic HIV-infected individuals with ART and ZL0580 revealed that ZL0580 accelerated HIV suppression during ART and delayed viral rebound after ART cessation. Mechanistically different from the BET/BRD4 pan-inhibitor JQ1, which nonselectively binds to BD1 and BD2 domains of all BET proteins, ZL0580 selectively bound to BD1 domain of BRD4. We further demonstrate that ZL0580 induced HIV suppression by inhibiting Tat transactivation and transcription elongation as well as by inducing repressive chromatin structure at the HIV promoter. Our findings establish a proof of concept for modulation of BRD4 to epigenetically suppress HIV and provide a promising chemical scaffold for the development of probes and/or therapeutic agents for HIV epigenetic silencing.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Infecções por HIV / HIV-1 / Proteínas de Ciclo Celular / Antirretrovirais Tipo de estudo: Prognostic_studies Limite: Female / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Infecções por HIV / HIV-1 / Proteínas de Ciclo Celular / Antirretrovirais Tipo de estudo: Prognostic_studies Limite: Female / Humans / Male Idioma: En Ano de publicação: 2019 Tipo de documento: Article