Your browser doesn't support javascript.
loading
Neuroprotective effects of some seaweeds against Zn - induced neuronal damage in HT-22 cells via modulation of redox imbalance, inhibition of apoptosis and acetylcholinesterase activity.
Olasehinde, Tosin A; Olaniran, Ademola O; Okoh, Anthony I.
Afiliação
  • Olasehinde TA; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa. tosinolasehinde26@yahoo.com.
  • Olaniran AO; SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, 5700, South Africa. tosinolasehinde26@yahoo.com.
  • Okoh AI; Nutrition and Toxicology Division, Department of Food Technology, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria. tosinolasehinde26@yahoo.com.
Metab Brain Dis ; 34(6): 1615-1627, 2019 12.
Article em En | MEDLINE | ID: mdl-31346859
ABSTRACT
Zinc plays an important role in neuronal signaling and neurotransmission. However, dyshomeostasis of this metal or its accumulation in the brain has been linked with neurological disorders such as Alzheimer's disease and Parkinson's disease. In this study, the neuroprotective effects of Ecklonia maxima (KPM), Gracilaria gracilis (GCL), Ulva lactuca (ULT) and Gelidium pristoides (MNP) in Zn -induced neurotoxicity in HT-22 cells was examined. Cells were treated with Zinc sulphate and/or aqueous - ethanol extracts and cell viability, apoptosis, acetylcholinesterase activity, including some antioxidant enzymes (catalase and superoxide dismutase activity) and glutathione (GSH) levels were determined. Malondialdehyde and nitric oxide levels produced in the Zn and/or seaweed extract treated cells were also determined. Prior treatment with the seaweed extracts improved cell viability and inhibited Zn - induced cell death. Acetylcholinesterase activity was significantly high in Zn treated cells compared to the control. Pre-treatment with the seaweed extracts triggered a decrease in acetylcholinesterase activity in Zn - treated cells. Furthermore, treatment with Zn caused a significant reduction in GSH levels as well as a decrease in superoxide dismutase and catalase activities. In contrast, the seaweed extract increased antioxidant enzyme activities and GSH levels. An increase in malondialdehyde and nitric oxide levels was also reversed after treatment with the seaweed extracts. These results suggest that the seaweed extracts improved cholinergic transmission disrupted by Zn - induced neurotoxicity and protected the cells against oxidative damage and neuroinflammation. The neuroprotective effects of the seaweed extracts could be linked to their bioactive constituents. Hence these seaweeds are potential sources of active ingredients with neuroprotective potentials and could be used for the development of functional foods and/or nutraceuticals.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acetilcolinesterase / Alga Marinha / Extratos Vegetais / Apoptose / Estresse Oxidativo / Fármacos Neuroprotetores / Neurônios Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acetilcolinesterase / Alga Marinha / Extratos Vegetais / Apoptose / Estresse Oxidativo / Fármacos Neuroprotetores / Neurônios Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article