Your browser doesn't support javascript.
loading
Ultrasound-derived Biceps Femoris Long Head Fascicle Length: Extrapolation Pitfalls.
Franchi, Martino V; Fitze, Daniel P; Raiteri, Brent J; Hahn, Daniel; Spörri, Jörg.
Afiliação
  • Fitze DP; Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, SWITZERLAND.
  • Raiteri BJ; Faculty of Sports Science, Human Movement Science, Ruhr University Bochum, Bochum, GERMANY.
  • Spörri J; Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, SWITZERLAND.
Med Sci Sports Exerc ; 52(1): 233-243, 2020 01.
Article em En | MEDLINE | ID: mdl-31403609
ABSTRACT

PURPOSE:

This study aimed to compare biceps femoris long head (BFlh) fascicle length (Lf) obtained with different ultrasound-based approaches 1) single ultrasound images and linear Lf extrapolation, 2) single ultrasound images and one of two different trigonometric equations (termed equations A and B), and 3) extended field of view (EFOV) ultrasound images.

METHODS:

Thirty-seven elite alpine skiers (21.7 ± 2.8 yr) without a previous history of hamstring strain injury were tested. Single ultrasound images were collected with a 5-cm linear transducer from BFlh at 50% femur length and were compared with whole muscle scans acquired by EFOV ultrasound.

RESULTS:

The intrasession reliability (intraclass correlation coefficient [ICC3,k]) of Lf measurements was very high for both single ultrasound images (i.e., Lf estimated by linear extrapolation; ICC3,k = 0.96-0.99, SEM = 0.18 cm) and EFOV scans (ICC3,k = 0.91-0.98, SEM = 0.19 cm). Although extrapolation methods showed cases of Lf overestimation and underestimation when compared with EFOV scans, mean Lf measured from EFOV scans (8.07 ± 1.36 cm) was significantly shorter than Lf estimated by trigonometric equations A (9.98 ± 2.12 cm, P < 0.01) and B (8.57 ± 1.59 cm, P = 0.03), but not significantly different from Lf estimated with manual linear extrapolation (8.40 ± 1.68 cm, P = 0.13). Bland-Altman analyses revealed mean differences in Lf obtained from EFOV scans and those estimated from equation A, equation B, and manual linear extrapolation of 1.91 ± 2.1, 0.50 ± 1.0, and 0.33 ± 1.0 cm, respectively.

CONCLUSIONS:

The typical extrapolation methods used for estimating Lf from single ultrasound images are reliable within the same session, but not accurate for estimating BFlh Lf at rest with a 5-cm field of view. We recommend that EFOV scans are implemented to accurately determine intervention-related Lf changes in BFlh.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Músculos Isquiossurais Tipo de estudo: Diagnostic_studies / Etiology_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Músculos Isquiossurais Tipo de estudo: Diagnostic_studies / Etiology_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article