Your browser doesn't support javascript.
loading
Single-Step Organization of Plasmonic Gold Metamaterials with Self-Assembled DNA Nanostructures.
Ren, Shaokang; Wang, Jun; Song, Chunyuan; Li, Qian; Yang, Yanjun; Teng, Nan; Su, Shao; Zhu, Dan; Huang, Wei; Chao, Jie; Wang, Lianhui; Fan, Chunhai.
Afiliação
  • Ren S; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Wang J; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Song C; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Li Q; School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Yang Y; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Teng N; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Su S; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Zhu D; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Huang W; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Chao J; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Wang L; Key Laboratory for Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
  • Fan C; School of Chemistry and Chemical Engineering and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
Research (Wash D C) ; 2019: 7403580, 2019.
Article em En | MEDLINE | ID: mdl-31549083
ABSTRACT
Self-assembled DNA nanostructures hold great promise as nanoscale templates for organizing nanoparticles (NPs) with near-atomistic resolution. However, large-scale organization of NPs with high yield is highly desirable for nanoelectronics and nanophotonic applications. Here, we design five-strand DNA tiles that can readily self-assemble into well-organized micrometer-scale DNA nanostructures. By organizing gold nanoparticles (AuNPs) on these self-assembled DNA nanostructures, we realize the fabrication of one- and two-dimensional Au nanostructures in single steps. We further demonstrate the one-pot synthesis of Au metamaterials for highly amplified surface-enhanced Raman Scattering (SERS). This single-step and high-yield strategy thus holds great potential for fabricating plasmonic metamaterials.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article