Your browser doesn't support javascript.
loading
Excited-state proton transfer relieves antiaromaticity in molecules.
Wu, Chia-Hua; Karas, Lucas José; Ottosson, Henrik; Wu, Judy I-Chia.
Afiliação
  • Wu CH; Department of Chemistry, University of Houston, Houston, TX 77004.
  • Karas LJ; Department of Chemistry, University of Houston, Houston, TX 77004.
  • Ottosson H; Department of Chemistry, Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden.
  • Wu JI; Department of Chemistry, University of Houston, Houston, TX 77004; jiwu@central.uh.edu.
Proc Natl Acad Sci U S A ; 116(41): 20303-20308, 2019 10 08.
Article em En | MEDLINE | ID: mdl-31554699
ABSTRACT
Baird's rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4n + 2] π-aromatic in the ground state, become [4n + 2] π-antiaromatic in the first 1ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o-Salicylic acid undergoes ESPT only in the "antiaromatic" S1 (1ππ*) state, but not in the "aromatic" S2 (1ππ*) state. Stokes' shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird's rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Prótons / Teoria Quântica / Ácido Salicílico / Elétrons / Hidroxiquinolinas Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Prótons / Teoria Quântica / Ácido Salicílico / Elétrons / Hidroxiquinolinas Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2019 Tipo de documento: Article