Your browser doesn't support javascript.
loading
Novel role of Tieg1 in muscle metabolism and mitochondrial oxidative capacities.
Kammoun, Malek; Piquereau, Jerome; Nadal-Desbarats, Lydie; Même, Sandra; Beuvin, Maud; Bonne, Gisèle; Veksler, Vladimir; Le Fur, Yann; Pouletaut, Philippe; Même, William; Szeremeta, Frederic; Constans, Jean-Marc; Bruinsma, Elizabeth S; Nelson Holte, Molly H; Najafova, Zeynab; Johnsen, Steven A; Subramaniam, Malayannan; Hawse, John R; Bensamoun, Sabine F.
Afiliação
  • Kammoun M; Biomechanics and Bioengineering Laboratory, Alliance Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7338, Compiègne, France.
  • Piquereau J; Signalling and Cardiovascular Pathophysiology - UMR-S 1180, Université Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry, France.
  • Nadal-Desbarats L; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
  • Même S; CNRS UPR4301, Centre de Biophysique Moléculaire, Orléans, France.
  • Beuvin M; Inserm U974, Centre de Recherche en Myologie, Sorbonne Université, Paris, France.
  • Bonne G; Inserm U974, Centre de Recherche en Myologie, Sorbonne Université, Paris, France.
  • Veksler V; Signalling and Cardiovascular Pathophysiology - UMR-S 1180, Université Paris-Sud, INSERM, Université Paris-Saclay, Châtenay-Malabry, France.
  • Le Fur Y; Aix-Marseille University, CNRS, CRMBM, Marseille, France.
  • Pouletaut P; Biomechanics and Bioengineering Laboratory, Alliance Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7338, Compiègne, France.
  • Même W; CNRS UPR4301, Centre de Biophysique Moléculaire, Orléans, France.
  • Szeremeta F; CNRS UPR4301, Centre de Biophysique Moléculaire, Orléans, France.
  • Constans JM; Institut Faire Faces, EA Chimère, Imagerie et Radiologie Médicale, CHU Amiens, Amiens, France.
  • Bruinsma ES; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
  • Nelson Holte MH; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
  • Najafova Z; Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
  • Johnsen SA; Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
  • Subramaniam M; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
  • Hawse JR; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
  • Bensamoun SF; Biomechanics and Bioengineering Laboratory, Alliance Sorbonne Universités, Université de Technologie de Compiègne, UMR CNRS 7338, Compiègne, France.
Acta Physiol (Oxf) ; 228(3): e13394, 2020 03.
Article em En | MEDLINE | ID: mdl-31560161
ABSTRACT

AIM:

Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood.

METHODS:

We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed.

RESULTS:

Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice.

CONCLUSION:

Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Músculo Esquelético / Proteínas de Ligação a DNA / Mitocôndrias / Músculos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Músculo Esquelético / Proteínas de Ligação a DNA / Mitocôndrias / Músculos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article