Your browser doesn't support javascript.
loading
Machine Learning in Epidemiology and Health Outcomes Research.
Wiemken, Timothy L; Kelley, Robert R.
Afiliação
  • Wiemken TL; Center for Health Outcomes Research, Saint Louis University, Saint Louis, Missouri 63104, USA; email: timothy.wiemken@health.slu.edu.
  • Kelley RR; Department of Computer Science, Bellarmine University, Louisville, Kentucky 40205, USA; email: rkelley@bellarmine.edu.
Annu Rev Public Health ; 41: 21-36, 2020 04 02.
Article em En | MEDLINE | ID: mdl-31577910
Machine learning approaches to modeling of epidemiologic data are becoming increasingly more prevalent in the literature. These methods have the potential to improve our understanding of health and opportunities for intervention, far beyond our past capabilities. This article provides a walkthrough for creating supervised machine learning models with current examples from the literature. From identifying an appropriate sample and selecting features through training, testing, and assessing performance, the end-to-end approach to machine learning can be a daunting task. We take the reader through each step in the process and discuss novel concepts in the area of machine learning, including identifying treatment effects and explaining the output from machine learning models.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Métodos Epidemiológicos / Avaliação de Resultados em Cuidados de Saúde / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Screening_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Métodos Epidemiológicos / Avaliação de Resultados em Cuidados de Saúde / Aprendizado de Máquina Tipo de estudo: Prognostic_studies / Screening_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article