Your browser doesn't support javascript.
loading
Bioactive Peptide Brush Polymers via Photoinduced Reversible-Deactivation Radical Polymerization.
Sun, Hao; Choi, Wonmin; Zang, Nanzhi; Battistella, Claudia; Thompson, Matthew P; Cao, Wei; Zhou, Xuhao; Forman, Christopher; Gianneschi, Nathan C.
Afiliação
  • Sun H; Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
  • Choi W; Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
  • Zang N; Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
  • Battistella C; Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
  • Thompson MP; Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
  • Cao W; Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
  • Zhou X; Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
  • Forman C; Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
  • Gianneschi NC; Department of Chemistry, Materials Science & Engineering, Biomedical Engineering, International Institute for Nanotechnology, Simpson Querrey Institute, Chemistry of Life Processes Institute and the Lurie Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
Angew Chem Int Ed Engl ; 58(48): 17359-17364, 2019 11 25.
Article em En | MEDLINE | ID: mdl-31595626
ABSTRACT
Harnessing metal-free photoinduced reversible-deactivation radical polymerization (photo-RDRP) in organic and aqueous phases, we report a synthetic approach to enzyme-responsive and pro-apoptotic peptide brush polymers. Thermolysin-responsive peptide-based polymeric amphiphiles assembled into spherical micellar nanoparticles that undergo a morphology transition to worm-like micelles upon enzyme-triggered cleavage of coronal peptide sidechains. Moreover, pro-apoptotic polypeptide brushes show enhanced cell uptake over individual peptide chains of the same sequence, resulting in a significant increase in cytotoxicity to cancer cells. Critically, increased grafting density of pro-apoptotic peptides on brush polymers correlates with increased uptake efficiency and concurrently, cytotoxicity. The mild synthetic conditions afforded by photo-RDRP, make it possible to access well-defined peptide-based polymer bioconjugate structures with tunable bioactivity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeos / Polímeros / Termolisina / Nanopartículas / Micelas Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeos / Polímeros / Termolisina / Nanopartículas / Micelas Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article