Your browser doesn't support javascript.
loading
4D biofabrication of skeletal muscle microtissues.
Apsite, Indra; Uribe, Juan Manuel; Posada, Andrés Fernando; Rosenfeldt, Sabine; Salehi, Sahar; Ionov, Leonid.
Afiliação
  • Apsite I; Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.
  • Uribe JM; Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.
  • Posada AF; Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.
  • Rosenfeldt S; Department of Physical Chemistry I, Faculty of Biology, Chemistry & Earth Sciences and Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
  • Salehi S; Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany.
  • Ionov L; Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.
Biofabrication ; 12(1): 015016, 2019 12 11.
Article em En | MEDLINE | ID: mdl-31600742
ABSTRACT
Skeletal muscle is one of the most abundant tissues in the body. Although it has a relatively good regeneration capacity, it cannot heal in the case of disease or severe damage. Many current tissue engineering strategies fall short due to the complex structure of skeletal muscle. Biofabrication techniques have emerged as a popular set of methods for increasing the complexity of tissue-like constructs. In this paper, 4D biofabrication technique is introduced for fabrication of the skeletal muscle microtissues. To this end, a bilayer scaffold consisting of a layer of anisotropic methacrylated alginate fibers (AA-MA) and aligned polycaprolactone (PCL) fibers were fabricated using electrospinning and later induced to self-fold to encapsulate myoblasts. Bilayer mats undergo shape-transformation in an aqueous buffer, a process that depends on their overall thickness, the thickness of each layer and the geometry of the mat. Proper selection of these parameters allowed fabrication of scroll-like tubes encapsulating myoblasts. The myoblasts were shown to align along the axis of the anisotropic PCL fibers and further differentiated into aligned myotubes that contracted under electrical stimulation. Overall the significance of this approach is in the fabrication of hollow tubular constructs that can be further developed for the formation of a vascularized and functional muscle.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Engenharia Tecidual / Mioblastos / Alicerces Teciduais Tipo de estudo: Evaluation_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Engenharia Tecidual / Mioblastos / Alicerces Teciduais Tipo de estudo: Evaluation_studies Limite: Animals Idioma: En Ano de publicação: 2019 Tipo de documento: Article